
Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 1 of 44

H2020 FRAMEWORK PROGRAMME
ICT-01-2014: Smart Cyber-Physical Systems

PROJECT NUMBER: 645496

Agile, eXtensible, fast I/O Module for the cyber-physical era

D5.1 – Operating system and documentation

Due date of deliverable: 31st January 2017
Actual Submission: 14th February 2017 (agreed extended date)

Start date of the project: 1st February 2015 Duration: 36 months

Lead contractor for the deliverable: EVI
Revision: See file name in document footer.

Project co-founded by the European Commission
within the HORIZON FRAMEWORK PROGRAMME (2020)

Dissemination Level: CO (promoted to) PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Change Control
Ver.# Date Author Organiz. Change History
0.1 25.01.2017 Paolo Gai, Davide Catani EVI/SECO Initial version from the Google doc
0.2 27.01.2017 Xavier Martorell BSC First Revision
0.3 27.01.2017 Paolo Gai, Davide Catani EVI/SECO Updated typos and text
0.4 29.01.2017 Paolo Gai EVI Typos
0.5 04.02.2017 Paolo Gai EVI Final release for last review.
0.6 25.10.2017 Paolo Gai EVI Integration of SECO and EVI updates
0.7 03.11.2017 Davide Catani SECO Updated descriptions
0.8 10.11.2017 Stefano Garzarella EVI Added appendix with text manuals
0.9 24.11.2017 Davide Catani SECO Updated section 4
0.91 10.12.2017 Davide Catani SECO Updated section 4.3 adding detail bout Ar-

duino software support
0.92 23/12/2017 Davide Catani SECO Updated table 3 and Figure3
1.0 13/2/2018 Davide Catani, Paolo Gai SECO, EVI Integrated comments of the reviewers

Release Approval

Name Role Date
Paolo Gai WP Leader 14.02.2018
Roberto Giorgi Project Coordinator for formal deliverable 14.02.2018

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 2 of 44

The following list of authors will be updated to reflect the list of contributors to the document.

Davide Catani, Davide Cardillo
R&D Department

SECO
Paolo Gai, Stefano Garzarella

R&D Department
Evidence– AXIOM

© 2015-2018 AXIOM Consortium, All Rights Reserved.
Document marked as PU (Public) is published in Italy, for the AXIOM Consortium, on the www.AXIOM-project.eu web site
and can be distributed to the Public.
All other trademarks and copyrights are the property of their respective owners. The list of author does not imply any claim of
ownership on the Intellectual Properties described in this document.
The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors
or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of
the information contained in this document.
This document is furnished under the terms of the AXIOM License Agreement (the "License") and may only be used or copied
in accordance with the terms of the License. The information in this document is a work in progress, jointly developed by the
members of AXIOM Consortium ("AXIOM") and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned
by or licensed to AXIOM Partners. The partners reserve all rights with respect to such technology and related materials. Any
use of the protected technology and related material beyond the terms of the License without the prior written consent of
AXIOM is prohibited. This document contains material that is confidential to AXIOM and its members and licensors. Until
publication, the user should assume that all materials contained and/or referenced in this document are confidential and pro-
prietary unless otherwise indicated or apparent from the nature of such materials (for example, references to publicly available
forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without
the prior written consent of AXIOM or such other party that may grant permission to use its proprietary material. The trade-
marks, logos, and service marks displayed in this document are the registered and unregistered trademarks of AXIOM, its
members and its licensors. The copyright and trademarks owned by AXIOM, whether registered or unregistered, may not be
used in connection with any product or service that is not owned, approved or distributed by AXIOM, and may not be used in
any manner that is likely to cause customer confusion or that disparages AXIOM. Nothing contained in this document should
be construed as granting by implication, estoppel, or otherwise, any license or right to use any copyright without the express
written consent of AXIOM, its licensors or a third party owner of any such trademark.
Printed in Siena, Italy, Europe.
Part number: Please refer to the File name in the document footer.

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE AXIOM SPECIFICATION IS PROVIDED BY AXIOM TO MEMBERS "AS
IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS.
AXIOM SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES OF
ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE
OR LOST BUSINESS, REVENUE, PROFITS, DATA OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT
CLAIMS BY THIRD PARTIES OR THE SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY,
NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 3 of 44

TABLE OF CONTENTS

GLOSSARY ...ͷ
ͳ Executive summary ..͸

ͳ.ͳ Main changes since the Dͷ.ͳ preview document at mʹͶ .. ͸
ͳ.ʹ Relation to other deliverables.. ͹
ͳ.͵ Tasks involved in this deliverable .. ͹

ʹ Introduction ...ͺ
ʹ.ͳ Document structure .. ͅ

͵ AXIOM Linux Distribution ..ͺ
͵.ͳ AXIOM SDK Components .. ͻ
͵.ʹ Driver support for AXIOM board peripherals.. ͻ

Ͷ Soft-IP for Arduino compatibility .. ͳʹ
Ͷ.ͳ Arduino Soft Core programming ... ͳͷ
Ͷ.ʹ Arduino Soft Core to Processing System communication ... ͳ͸
Ͷ.͵ Arduino IDE for programming and testing Arduino Soft Core ͳ͹

ͷ Kernel driver and User Libraries for the High-speed board-to-board
interconnect .. ʹ Ͳ

ͷ.ͳ High level overview of the AXIOM-link architecture ... ʹ Ͳ
ͷ.ʹ AXIOM NIC features ... ʹ ʹ
ͷ.͵ General guidelines used for the design of the Linux Device driver and library
architecture ... ʹ ͵
ͷ.Ͷ AXIOM-link APIs at different levels .. ʹ Ͷ
ͷ.ͷ AXIOM NIC Device Driver and User Library internal structure ʹ Ͷ

͸ AXIOM User Space utilities .. ʹ ͷ
͸.ͳ axiom-init .. ʹ ͷ
͸.ʹ axiom-info .. ʹ ͸
͸.͵ axiom-ethtap ... ʹ ͸
͸.Ͷ axiom-netperf .. ʹ ͸
͸.ͷ axiom-ping .. ʹ ͸
͸.͸ axiom-rdma .. ʹ ͸
͸.͹ axiom-recv .. ʹ ͸
͸.ͺ axiom-run .. ʹ ͸
͸.ͻ axiom-send .. ʹ ͸
͸.ͳͲ axiom-traceroute ... ʹ ͸
͸.ͳͳ axiom-utility .. ʹ ͸
͸.ͳʹ axiom-whoami ... ʹ ͸

͹ Initial AXIOM-link network configuration .. ʹ ͹
ͺ Possible extensions ... ʹ ͹
ͻ Confirmation of DoA objectives and Conclusions ... ʹ ͹

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 4 of 44

Appendix A... ʹ ͺ
Appendix B... ʹ ͻ
Appendix C ... ͵ ͳ
References ... Ͷ͵

TABLE OF FIGURES FIGURE ͳ – AXIOM-ͻEG BOARD, BLOCK DIAGRAM ... ͳͲ FIGURE ʹ – WORKFLOW FOR THE CUSTOM PETALINUX DISTRIBUTION. .. ͳͳ FIGURE ͵ – AVRͺ SOFT-IP STRUCTURE. .. ͳ͵ FIGURE Ͷ – ARCHITECTURE OF THE ARDUINO SOFT CORE PROGRAMMING. .. ͳͷ FIGURE ͷ – ASYNCHRONOUS COMMUNICATION BETWEEN PS AND THE ARDUINO SOFT CORE. ... ͳ͸ FIGURE ͸ – ARDUINO Ͷ RELAYS SHIELD PLUGGED ON THE AXIOM-ͻEG BOARD.. ͳ͹ FIGURE ͹ – ARDUINO IDE RUNNING ON THE AXIOM-ͻEG BOARD. .. ͳͺ FIGURE ͺ – THE AXIOM NIC ARCHITECTURE HIGHLIGHTING THE KERNEL DRIVERS AND THE USER LIBRARIES. ʹͳ FIGURE ͻ – MULTIPLE QUEUES AVAILABLE FOR THE DIFFERENT KIND OF MESSAGES IN THE AXIOM NIC. ʹ͵ FIGURE ͳͲ – ALLOCATION OF THE POOL OF LONG MESSAGES IN THE RDMA ZONE OF THE AXIOM NIC. ʹͷ FIGURE ͳͳ – HIGH-LEVEL DESCRIPTION OF THE NODES DISCOVERY ALGORITHM. ... ʹͺ

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 5 of 44

GLOSSARY
aarch64 – ARM 64-bit instruct set
ALU – Arithmetic Logic Unit
API – Application Programming Interface
ARM – Instruction set architecture developed by ARM Holdings Ltd.
AVR8 – a RISC microcontroller developed by Atmel, implemented as open source IP for FPGAs
AXI – Advanced Extensible Interface
BRAM – Block RAM
BSP – Board Support Package
CPU – Central Processing Unit
CSI – Camera Serial Interface
DoA - Description of Action (acronym set by the European Commission)
eMMC – Embedded Multi Media Card
FPGA – Field Programmable Gate Array
GPU – Graphical Processing Unit
ICMP - Internet Control Message Protocol
IDE – Integrated Development Environment
IOCTL – System call for device-specific input/output operations
IP – Intellectual property
ISR – Interrupt Service Routine
LVDS – Low voltage differential signals
Mali – A GPU microarchitecture developed by ARM Holdings Ltd.
Mercurium – OmpSs compiler
MPSoC – Multiprocessor System-on-Chip
N.C. – Not connected
Nanos++ – OmpSs runtime
NIC – Network Interface Controller
OS – Operating system
PL – Programmable logic
POSIX - Portable Operating System Interface for UNIX
PS – Processing system
QEMU – Open source machine emulator and virtualizer
RDMA – Remote Direct Memory Access
RISC – Reduced Instruction Set Computer
SDK – Software Development Kit
SoC – System on chip
TCP – Transmission Control Protocol
TTL – Transistor-transistor logic
UART – Universal Asynchronous Receiver-Transmitter serial port
microSD – Micro SD card

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 6 of 44

1 Executive summary

Please note: THIS DELIVERABLE IS UN UPDATED VERSION OF THE INTIAL D5.1 AND IT
WAS INITIALLY CONFIDENTIAL. IN AGREEMENT WITH THE INTERESTED PARTNERS
D5.1 IS NOW MADE PUBLIC.

This document is the final version of deliverable D5.1, and it is meant to provide a description on the
work done on the following components:

● The AXIOM Linux Distribution, which is the outcome of the build system for the AXIOM
board based on PetaLinux;

● The Soft-IP Arduino compatibility layer (including the “Arduino-UNO” interface), which is a
soft IP enabling users to program Arduino applications on top of the AXIOM board;

● The Kernel Driver and corresponding user libraries for controlling the AXIOM NIC (the soft-
IP has been developed in T6.5 since month m6);

● The AXIOM User Space utilities, needed to initialize and use the AXIOM-link.

Finally, this document covers a short description of the initial AXIOM-link network configuration (in-
cluding the discovery algorithm used to discover Node IDs).

1.1 Main changes since the D5.1 preview document at m24
In order to simplify the reading of this deliverable compared to the preview version, we highlight below
the main changes:

 Figure 4 has been slightly changed;
 The AXIOM NIC short messages have now a payload of 248 bytes;
 Section 5.3, a tunnel for Ethernet packets on top of the AXIOM NIC has been implemented;
 Section 6.3, The axiom-ethttap daemon has been added;
 Appendix B and C have been added.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 7 of 44

1.2 Relation to other deliverables
This document can be thought as the basis on top of which the following deliverable depends:

● D5.2 Remote memory Access;

This deliverable also has a strong relationship with the following deliverables:

● D6.1 Technical specification of the AXIOM board;
● D6.2 Hardware design production documents;
● D6.3 System prototype, BSP testing and documentation;
● D6.4 Soft-IPs for the FPGA and documentation;
● D6.5 Interconnect API document.

1.3 Tasks involved in this deliverable
Task 5.1 (month 1 - 18): Operating system

What:

This task will deal with the integration/configuration of a Linux distribution containing the drivers for
the peripherals, the libraries needed by applications and the development tools for the specific refer-
ence platform.

How:

• Partner SECO will be in charge of the porting and configuration of the base Linux distribution;

• Partner SECO will develop/integrate kernel drivers and soft IPs for the on-board devices, as well as
the Arduino UNO interface and the display controller;

• Partner EVI will design and develop the kernel driver for the high-speed B2B interconnect;

• Partner EVI will integrate any additional library needed by the use-cases.

Expected output:

- Source code of boot-loader and Linux kernel;

- Pre-compiled binary images of firmware (i.e., boot-loader, Linux kernel and filesystem) for the refer-
ence platform;

- Development tools (e.g., compiler, IDE) and scripts for configuring and building new firmware im-
ages.

D5.1: Operating system and documentation

This deliverable will consist in a preliminary version of the Linux distribution with drivers for a subset
of the hardware peripherals of the reference platform. The delivered package will also contain the
development tools (e.g., compiler, debugger, etc.) with a user manual explaining their installation and
usage

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 8 of 44

2 Introduction
The AXIOM Linux Distribution includes all the components, described later on this section, that are
necessary to build a basic OS image to be used on the AXIOM board[16], [42].

Standard tools from Xilinx have been modified in order to keep using the IDE provided for the Zynq
UltraScale+ MPSoC (which is necessary to integrate FPGA IPs at the system level) to operate on remote
repositories for custom bootloader/kernel source code and specific versions of the Ubuntu filesystem.

The BSP is now in its final version, and it has been tested on the final AXIOM boards. Before using the
final AXIOM board, the software has also been developed by using the AXIOM simulator (WP7),
Xilinx emulators and other prototyping boards (Udoo boards, Trenz boards, Xilinx ZCU102) that were
acquired or made available by partners.

This document includes also a description of the architecture of the kernel drivers that manage the
AXIOM NIC. In addition to that, a set of software libraries have been developed to provide a messaging
interface in user space. On top of the kernel drivers and libraries, a set of AXIOM User Space utilities
have been developed, taking care of the cluster initialization through the implementation of a discovery
and of a routing table computation algorithm.

2.1 Document structure
Section 3 provides details on the current status of the Linux distribution for the AXIOM boards. After
that, Section 4 provides a description of the Soft-IP providing Arduino capabilities, which is integrated
in the FPGA fabric to control the Arduino UNO R3 pinout on the AXIOM board.
Next, the AXIOM NIC kernel drivers and user libraries are described in Section 5. Section 6 describes
the set of user space applications available to the user, whereas Section 7 and 8 provides a description
of the AXIOM-link network configuration and the possible future extensions to the current implemen-
tation.
Finally, Appendix A shortly describes the network discovery algorithm used in the cluster, Appendixes
B and C shortly refers to the Software Package, User Manual and documentation produced for the
partners allowing them to use the AXIOM boards.

3 AXIOM Linux Distribution
In order to generate an OS image to be flashed on the AXIOM boards, all the necessary tools, source
code and packages are included in a suite (AXIOM SDK), which is derived from the one originally
distributed by Xilinx, enabling software development for Zynq UltraScale+ based projects.
The custom BSP is based on source code distributed by Xilinx, which has been customized to support
the AXIOM board.
The AXIOM Consortium agreed that an Ubuntu 16.04 based distribution is the preferred choice since
it provides enough flexibility and ease of use compared to the previous choice Ubuntu 14.04. Two
variants, based on Ubuntu 16.04, are available.

● Minimal version:
- Light;
- Reconfigurable;
- aarch64;
- Mali 400-r5p1-01rel0 kernel driver and libraries for X-Window and fbdev.

● Desktop version:
 - Minimal version plus MATE Window Manager.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 9 of 44

A list of the packages, which have been included in the filesystem, is available on the AXIOM wiki,
please refer to [6].

3.1 AXIOM SDK Components
Build system:

 PetaLinux SDK v2016.3: Xilinx tool to manage the Embedded Linux system;
 XGENIMAGE: command line tool for the customization and building of a complete system

image flashable in a bootable SD card.

Source Code:

 linux-4.6.0-AXIOM-v2016.3: Linux kernel 4.6.0 based on Xilinx kernel and customized by
SECO;

 u-boot-2016.07-AXIOM-v2016.3: U-Boot version 2016.07 based on Xilinx kernel and custom-
ized by SECO.

Template BSP project:

 AXIOM-ZU9EG-2016.3: PetaLinux project for the AXIOM board;
 AXIOM_XCZU9EG_template_v1.8x_2016.3: starting point to configure the PL and PS sys-

tems via Vivado 2016.3.

Filesystem Binaries:

 Ubuntu 16.04 (Xenial) without graphical interface (minimal version);
 Ubuntu 16.04 (Xenial) with graphical interface (desktop version).

The XGENIMAGE tool allows to automatically generate, starting from a pre-built BSP, a bootable
image to flash a microSD card to boot AXIOM system.

3.2 Driver support for AXIOM board peripherals
The Linux kernel originally available for Zynq UltraScale+ has been modified in order to support the
specific hardware configuration implemented by the AXIOM board, whose structure is outlined in Fig-
ure 1.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 10 of 44

Boot Media

AXIOM link

Video outputs

Zynq Ultrascale+ ZU9EG MPSoC

Gigabit
Ethernet

transceiver

2 x USB
3.0Type-A
connectors

JTAG connector

QSPI Flash

microSD
connector

DDR4 ECC

So-DIMM

RJ-45 Ethernet
connector

2 x USB 2.0
ULPI

Transceivers

mini-DP
connector

Camera
Connector

LVDS connector

Clock generator

1GB 32-bit
Soldered down
DDR4 memory

8GB eMMC

micro-B USB
Device

connector

USB-to-UART
bridge

Arduino UNO
connectors

Trace port
connector

HSDP connector

USB Type-C
connectors

#[0..3]

Cable
orientation

detection logic

Processing

system

RGMII

ULPI
#[0..1]
USB SS
#[0..1]

eDP

DDR4

JTAG

QSPI

SDIO #0

SDIO #1

UART #0

Programmable

Logic

LVDS

DDR4

GPIO

TRACE
PORT

HSDP

GTH Transceivers
REFCLK

GTH
#[0..3]

Figure 1 – AXIOM-9EG board, block diagram

All the on-board peripherals are supported by the final version of the Linux kernel. Additional hardware
level details are provided in Table 1.

Table 1 – AXIOM board’s peripherals.

Device P/N Board sche-
matic reference

Notes

eMMC MTFC8GAKAJCN-1M WT U15
microSD - CN25
QSPI Flash MT25QU512ABB1EW9 U5/U6
Watchdog
timer/ uP supervisor

APX823-29W5 U24 AXIOM custom driver – Watchdog con-
figurable from user space

User LED - LED3
USB 3.0 - CN9 2 x Host ports
Debug UART - CN17
TTL UART -
Ethernet KSZ9031 PHY CN8
AXIOM-link - CN3, CN4

CN5, CN6

DisplayPort - CN7
LVDS - J1 Optional
MIPI CSI - CN14 Optional
Power monitors INA219A U[42..49] AXIOM custom driver for the power

monitoring at user space level
Clock generator Si5341 U22 AXIOM custom driver – Clock providers

used also by DRM driver for video output
Mali GPU - -
FPGA Soft-IPs - - Custom drivers to manage: Arduino and

AXIOM NIC Soft IPs and application
specific accelerators inferred through
OmpSs@FPGA

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 11 of 44

Beyond the customized source code for bootloader and Linux kernel and dedicated filesystem versions,
the BSP for the AXIOM board relies on a modified version of the PetaLinux build system, originally
distributed by Xilinx.

The custom PetaLinux version can be used to generate the AXIOM board following the workflow out-
lined below and summarized in Figure 2:

Figure 2 – Workflow for the custom PetaLinux distribution.

1. Download the original PetaLinux tool (from a dedicated server managed by Xilinx)
2. Download the template project to generate PetaLinux BSP for the AXIOM board, which is

stored into an AXIOM Git repository [8].
3. Check out bootloader and kernel source code. Local source code trees are no longer used, re-

mote Git repositories replace them.
4. Generate the Filesystem using the custom procedure that has been set up:

○ Download the list of available filesystems;
○ Check the filesystem selection and download of the relative archive via http, after old

file cleaning;
○ Create basic target Fsfolder for rootfs.

5. Follow the standard PetaLinux compilation procedure as described by Xilinx’s applicable
documents.

6. Install the custom target FileSystem: this imply to select one of the available filesystem bi-
nary and include specific application packages through PetaLinux build system.

In the case of the usage of OmpSs@FPGA accelerators, autoVivado (explained in D4.3) will generate
a hardware design with the baseline AXIOM board integrated with the accelerators. The hardware de-
scription file of this design can be used in the standard Petalinux compilation procedure.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 12 of 44

4 Soft-IP for Arduino compatibility
The AXIOM board can interface Arduino shields, allowing developers to leverage a plenty of available
sensors and actuators to enhance system’s functionalities. A dedicated driver takes care about initiali-
zation of the device (which is embedded in the FPGA fabric) and provides communication mechanisms
between the CPU complex and the Arduino Soft core. A set of command line interfaces (sysfs) and
programming command interfaces (ioctl syscalls) has been developed.

For these purposes, the major activities performed are:

● Soft core selection;
● Implementation details analysis;
● Programmability from the PS;
● Communication between PS and AVR8 Soft-IP.

To allow compatibility and Arduino-like programmability, the starting point was the AVR8 Soft-Pro-
cessor developed by Ruslan Lepetenok. Further information about the original AVR core is provided
by [5].

The Atmega103 is an 8-bit microcontroller based on the AVR RISC architecture, which combines a
rich instruction set with 32 general-purpose working registers directly connected to the Arithmetic
Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed
in one clock cycle.

The AVR uses a Harvard architecture concept with separate memories and buses for program and data.

Lepetenok’s Soft-IP version has been modified by SECO, as shown by Figure 3, in order to add the
required infrastructures to interface the CPU complex integrated within the Zynq UltraScale+ device.

The Soft-IP provides the following peripherals:

● 8-bit data;
● Clock Divider;
● 4 Kbytes Data Memory;
● 16 Kbytes Program Memory;
● 8 Ports (for a total amount of 48 GPIO, more than enough to cover the requirements of the

Arduino socket);
● 4 Timer/Counters, for implementing PWM outputs;
● UART;
● SPI;
● An interface to the analog to digital converter integrated in Zynq’s PL (referred as system

monitor);
● I2C.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 13 of 44

Figure 3 – AVR8 Soft-IP structure.

The Original soft core has been almost preserved in the AXIOM implementation, basically adding An-
alog-to-digital conversion functionality and I2C connectivity (I2C was only partially completed within
the project’s framework).

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 14 of 44

The AVR8 Soft-IP mapping on the Arduino UNO connector is outlined by Table 2, further details are
provided by deliverables D6.1 (Technical specification of AXIOM boards) and D6.2 (Hardware design
production documents).

Table 2 – Arduino connector pin mapping.

Arduino Uno connector

Arduino UNO AVR Soft-IP core pin XCZU9EG-1FFVC900
Zynq UltraScale+ ball # or Backplane

PD0 UART_RX H13
PD1 UART_TX H14
PD2 PORT_A[2] J14
PD3 PORT_A[3] K14
PD4 PORT_A[4] J15
PD5 PORT_A[5] K15
PD6 PORT_A[6] G14
PD7 PORT_A[7] G15
PB0 PORT_B[0] F13
PB1 PORT_B[1] G13
PB2 PORT_B[2] E15
PB3 PORT_B[3] F15
PB4 PORT_B[4] E13
PB5 PORT_B[5] E14
GND N/A connected to board's power planes
AREF N/A N.C
PC4 I2C_DAT AB3
PC5 I2C_CLK AC3
ADC0 NOT CURRENTLY SUPPORTED U7
ADC1 NOT CURRENTLY SUPPORTED U11
ADC2 NOT CURRENTLY SUPPORTED W11
ADC3 NOT CURRENTLY SUPPORTED U9
ADC4 ADC[4] T11
ADC5 NOT CURRENTLY SUPPORTED R10
VIN N/A N.C.
GND N/A connected to board's power planes
GND N/A connected to board's power planes
5V N/A connected to board's power planes
3V3 N/A connected to board's power planes
PC6 PORT_A[1] D14
IOREF N/A N.C.
N.C. N/A N.C.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 15 of 44

4.1 Arduino Soft Core programming
The BRAM_prog_driver allows mapping the Soft-core program hex file in RAM blocks (for in-
stance the program memory has been mapped to /dev/memX). We can use a 32 bit AXI interface that
allow, through AXI_BRAM_controller, to initiate write/read transactions from ARM-core to the
BRAM of the AVR8 implemented in PL (see Figure 4).

Figure 4 – Architecture of the Arduino Soft Core programming.

In Figure 4, the main components involved on the programming of the Soft Core are colored in the
following way:

Linux standard interface through which the user space can interact with the Soft-IP designed in PL.

Set of commands to manage the FIFO controllers in order to:

 write/read to/from the program memory of the Arduino soft core
 start/stop program execution on the soft core

Linux standard interface used to communicate with the Soft-IP implemented in the PL.

High level function set to manage BRAM access accordingly to the Soft-IP core’s status. For ex-
ample, program execution is stopped when updating the program memory. Moreover it performs .hex
program file parsing and checksum verification.

Set of functions used to interact with the BRAM controller.

The access to the Soft-IP takes place through a reserved memory range, through dedicated memory
mapped registers.

The AVR soft-IP is included in the integrated Xilinx Vivado project:
 https://git-private.axiom-project.eu/AXIOM-ZU9EG-2016.3/

The Arduino IDE is included in the official SD-IMAGE of the AXIOM-board (for convenience):
 https://download.axiom-project.eu/IMAGES/XOS_v0.8_20180112.tar.bz2

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 16 of 44

4.2 Arduino Soft Core to Processing System communication
Beyond AVR processor programming, it is useful to provide developers a mechanism to allow commu-
nication between the CPU complex integrated in the PS (i.e., the ARM cores) and the AVR Soft Core
synthetized in the PL (Figure 5).

The communication between user applications and Arduino Soft Core is provided in a standard way,
with a kernel driver and a set of APIs. The first one (yellow block in Figure 4) has the double purpose
to implement the communication interface between the Kernel and the Soft Core and the communica-
tion interface between the kernel space and the user space, provided as a set of primitives. The second
one (blue block in Figure 4) is a dynamic library, which uses these primitives and implements a higher
set of functions that can be called by user applications.

There are two main interfaces: 1) user space/kernel space and 2) kernel/Soft Core. Both interfaces are
asynchronous, so the driver implements a synchronization mechanism that queues the tasks to perform.
The priority can be assigned at run-time or in a static way, based on the specific operation.

As described throughout this section, the Processing System within Zynq UltraScale+ SoC controls,
acting as the communication master, the status of the Soft-IP bridge towards the AVR core, which is
acting like a communication slave. In order to use the Soft Core as slave device and allow it to notify
events to the master, the driver handles an interrupt routine (ISR) in which the slave notification is
decoded and the message (from the slave) is passed to the user space via kernel event system. In this
way, an asynchronous communication from the slave to the user application is provided.

Figure 5 – Asynchronous communication between PS and the Arduino Soft Core.

Interface 2

Interface 1

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 17 of 44

4.3 Arduino IDE for programming and testing Arduino Soft Core
Arduino IDE version 1.5.2 has been included in the BSP for the AXIOM board. A dedicated version of
the Arduino library has been developed and has been used to test the kernel drivers described by
Sections 0 and 4.2.

The test setup consists of the AXIOM-board accomodating some of the most popular Arduino shields,
like the ‘Arduino 4 relays shield’ (further information is provided by [4]) as shown in Figure 6, as well
as prototyping hardware (like EEPROM, potentiometers, etc) which is a common usage for Arduino.

Figure 6 – Arduino 4 relays shield plugged on the AXIOM-9EG board

For testing purposes simple programs for the Arduino Soft Core, usually referred in the Arduino
community as ‘sketches’, were developed and included in the AXIOM BSP. Figure 7 shows a
screenshot of such a sketch (programmed on the AVR core’s program memory through the Arduino
IDE) and a Bash script (which runs on the PS) exchanging numeric values in a ping-pong fashion.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 18 of 44

Figure 7 – Arduino IDE running on the AXIOM-9EG board.

Table 3 outlines the current support of functions described by the Arduino API reference.

Table 3 – Arduino supported APIs in AXIOM BSP.

FUNCTION’S
NAME

CURRENT SUP-
PORT STATUS NOTES

Digital I/O
digitalRead() Supported
digitalWrite() Supported
pinMode() Supported

Analog I/O

analogRead() Supported Currently just one analog input is supported. Extension to sup-
port six inputs is in progress

analogReference() Not supported
AREF pin is not connected, analogReference() is fixed to DE-
FAULT value. Might be extended in future releases of the AX-
IOM board

analogWrite() Supported
Advanced I/O

noTone() Supported
pulseIn() Supported
pulseInLong() Supported
shiftIn() Supported
shiftOut() Supported
tone() Supported

Time
delay() Supported
delayMicroseconds() Supported
micros() Supported
millis() Supported

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 19 of 44

Math
abs() Supported
constrain() Supported
map() Supported
max() Supported
min() Supported
pow() Supported
sq() Supported
sqrt() Supported

Trigonometry
cos() Supported
sin() Supported
tan() Supported

Characters
isAlpha() Supported
isAlphaNumeric() Supported
isAscii() Supported
isControl() Supported
isDigit() Supported
isGraph() Supported
isHexadecimalDigit() Supported
isLowerCase() Supported
isPrintable() Supported
isPunct() Supported
isSpace() Supported
isUpperCase() Supported
isWhitespace() Supported

Random Numbers
random() Supported
randomSeed() Supported

Bits and Bytes
bit() Supported
bitClear() Supported
bitRead() Supported
bitSet() Supported
bitWrite() Supported
highByte() Supported
lowByte() Supported

External Interrupts
attachInterrupt() Supported
detachInterrupt() Supported

Interrupts
interrupts() Supported
noInterrupts() Supported

Communication
serial Supported
stream Supported

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 20 of 44

5 Kernel driver and User Libraries for the High-speed
board-to-board interconnect

One of the parts of the AXIOM Project is related to the design and implementation of a fast board-to-
board connection (named AXIOM-link) which is able to provide a high-performance connection be-
tween boards capable of RDMA. This section is dedicated to the description of the main components
of the hardware and software architecture related to the AXIOM-link interface. This interconnection
provides the basis for the implementation of the transport layer that is used by the AXIOM Allocator
and by the GASNet Conduits described in D5.2.

5.1 High level overview of the AXIOM-link architecture
The main components of the AXIOM-link infrastructure are the following (see Figure 8):

● AXIOM NIC
Implemented in the FPGA by partner FORTH. The AXIOM NIC exports a set of registers to
the computing part of the FPGA. These registers are described in the Datasheet [1].

● AXIOM NIC Device Driver
Implements the kernel-related part of the infrastructure, which is responsible to:

● properly handling the AXIOM NIC registers;
● provide abstractions for communication ports;
● provide an IOCTL interface to the user space;
● extend the hardware buffering space in memory, thanks to the usage of kernel threads.

● AXIOM User Libraries
The AXIOM User Libraries are responsible for providing a comprehensive C API, which can
be used by the AXIOM applications to interact with the network interface in a simpler way.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 21 of 44

Figure 8 – The AXIOM NIC Architecture highlighting the kernel drivers and the user libraries.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 22 of 44

5.2 AXIOM NIC features
In this subsection, we recall the main features of the AXIOM NIC, which are useful to understand how
the higher software layers use them to implement the various features provided. A complete reference
document regarding the AXIOM NIC is available in the provided archive (see Appendix B).

The main features we want to highlight in this step are the following:

● Multiple queues of descriptors.
Each kind of message is mapped for reasons of efficiency to separate message queues.

● Interrupt moderation.
The AXIOM NIC only generates interrupts when the queue status changes (from empty to not
empty, or from full to not full). This is used to limit the interrupt overhead compared to a con-
figuration where an interrupt is sent at each message arrival. The driving idea is that, once the
first interrupt is launched, the device driver will read all the NIC messages at once, with
higher efficiency.

● Link status monitoring.
The AXIOM NIC is able to provide information about the fact that a specific interface of the
board is connected or not to another board. This feature is particularly useful during the dis-
covery algorithm.

● Routing decision based on Routing Tables.
The routing of messages in the AXIOM NIC is based on a store & forward technique, where
each node maintains a routing table holding the information about the interface to be used to
reach a specific node. Please note that the routing tables are computed by software (in particu-
lar by the axiom-init application, see Section 6.1), and stored in hardware (one register
for each node, see Section 5, Routing Registers, of [1]).

● Multiple type of messages.
The network interface is able to concurrently send two types of messages, small and big mes-
sages. Small messages are RAW messages with a payload (embedded in the descriptor) of up
to 248 bytes (theoretically 255 but limited to guarantee 8-byte alignment). RAW messages
can be directed to a specific node, or to a neighbor interface (this to implement the discovery
algorithm). Big messages are used for RDMA read/writes, as well as for LONG messages,
which are messages using the RDMA subsystem, with a destination address taken from a pool
of buffers provided by the receiver node.

● Multiple queues available.
The AXIOM NIC provides 2 set of queues (one for small and one for big messages, see Fig-
ure 9). The descriptor of each message has the possibility to specify 8 ports, which will be
processed inside each node to provide a bind mechanism similar to the one available in the
TCP protocol.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 23 of 44

Figure 9 – Multiple queues available for the different kind of messages in the AXIOM NIC.

5.3 General guidelines used for the design of the Linux Device
driver and library architecture

During the design of the network infrastructure, we took special care about defining a complete system
that could be efficiently mapped on the parallel programming libraries running in user space. Moreover,
we took inspiration from some of the latest works in the networking area, such as Netmap [2], to try to
implement an architecture that could efficiently use the power of the AXIOM NIC and of the underlying
high-speed transceivers in the FPGA. For this reason, we followed these guidelines during the imple-
mentation of the AXIOM Drivers and during the design of the AXIOM NIC registers:

● Network management in user space.
Compared to the standard TCP/IP Linux stack, we tried to move various features and network
support in user space, limiting the AXIOM NIC Device Driver to its main task of handling the
delivery of the packets between the user space applications and the AXIOM NIC registers.
This include the support for control packets (like the ICMP ping), the discovery algorithm and
routing calculation, and so on. This has the advantage of limiting the amount of kernel code,
while still maintaining good performance.

● Possibility to support memory mapped registers exposed to the user space.
We left open the possibility to use memory mapped registers to avoid the use of IOCTL on
each packet transfer, and to reduce memory copies. On the other hand, this requires the avail-
ability of separate per-process network queues to limit the overhead that is linked to mutual
exclusion on the NIC register sets.

● Possibility to use the NIC as tunnel for Ethernet packets.
Although not included in the DoA, we added the possibility to have a virtual Ethernet device
mapped on top of the AXIOM NIC as a replacement for a standard Linux network interface.
The idea is that the LONG messages will be used as datagrams, giving the possibility for
TCP/IP packets to be sent on top of the AXIOM NIC layers. This has the advantage to reduce
cabling between the boards (only the AXIOM-link is needed), allowing legacy applications
based on TCP/IP to run unmodified on top of the AXIOM-link network.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 24 of 44

5.4 AXIOM-link APIs at different levels
Based on the main components of the AXIOM-link architecture (NIC, Device Driver, User Libraries),
we defined three levels of API:

● AXIOM NIC register API, documented in [1], which is a datasheet-like description of the
registers of the AXIOM NIC, and which has been specified in collaboration between partners
FORTH and EVI.

● AXIOM IOCTL API, an internal API documented in [3], which is used to handle user/kernel
space data passing and notifications.

● AXIOM User API, documented in [3], which is an API implemented in a set of dynamic li-
braries, which is used to provide a simple interface for the AXIOM applications for the
IOCTL API.

5.5 AXIOM NIC Device Driver and User Library internal structure
The AXIOM NIC registers are handled internally in the Linux Kernel by a dedicated driver, named
“axiom_netdev.ko”. The AXIOM NIC Device driver is responsible for interfacing the AXIOM
NIC registers with the user space.

The internal architecture (depicted in Figure 8) can be summarized in the following main components:

● The driver is divided in two parts, the RX and the TX part.
● The RX path (green box in the kernel part of the Figure 8), shows a kernel thread, which is

responsible for fetching packets from the hardware queue, and for dispatching them in the per
port queues. After that, the IOCTL implementation only polls from the available per-port
queues.

● The TX path (blue box in the kernel part of Figure 8), pushes directly the messages in the
transmission queue, or blocks waiting for an empty descriptor.

The AXIOM User Library provides a set of primitives that can be used to directly interact with the
AXIOM Device Driver exported IOCTLs. In addition to the AXIOM RAW messages, the system also
offers the possibility to perform RDMA transactions.

The RDMA transactions that can be issued by the AXIOM User Library allowing the setup of an RDMA
transaction on a specific RDMA enabled memory region. The size of the region must be multiple of 8
bytes, and its maximum size of 512 Kbytes was determined together by the partners EVI, BSC and
UNISI to allow the transmission in a single transfer of most of the RDMA operations.

In addition to the RDMA transfers, the API allows the sending of datagram messages using the LONG
messages of the AXIOM NIC. In this case, LONG messages have a maximum payload of 4Kbytes
(enough to store a standard Ethernet packet), supports a maximum of 8 ports, and works on top of a set
of preallocated buffers that are constantly refurbished by the kernel driver. Currently there is only one
of such message pools in the AXIOM NIC, forcing in this way a memory copy between the kernel and
the user space (this memory copy could be removed if there could be the possibility of a per-port pool
of messages). The pool of messages is allocated at the beginning of the RDMA memory zone, before
the initialization of the Level 1 allocator (see D5.2), as shown in Figure 10.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 25 of 44

Figure 10 – Allocation of the pool of LONG messages in the RDMA zone of the AXIOM NIC.

6 AXIOM User Space utilities
Together with the AXIOM Device Driver and the AXIOM User Libraries, we developed a set of ac-
companying applications. Some of them implement a needed subset of functionalities that have been
“moved” to userspace, such as the network discovery. Other utilities are command line applications
useful for testing and scripting functionalities. All utilities have a built-in help that is printed by using
the -h command line parameter. The following is a short description of these utilities.

6.1 axiom-init
axiom-init is the main daemon running on all nodes of the cluster. It is responsible for the following
features:

● The network startup and first configuration (see Appendix A), in particular:
○ the discovery protocol, which is a recursive algorithm used to traverse all nodes and

assign the node IDs;
○ the routing table computation on the master node and the consequent distribution to

all nodes;
● The handling of control messages (which in a typical TCP/IP implementation are handled by

the network stack in the kernel, as for example the ICMP messages);
The axiom-init daemon can be started in master or slave mode. Only one node can be started in the
network as master node: in fact, the master node is responsible for starting the discovery algorithm as
well as the routing table calculation and distribution.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 26 of 44

6.2 axiom-info
This application prints a set of information about the AXIOM NIC, including:

● node ID;
● status of the board interfaces;
● number of nodes on the network;
● routing table for the node;
● status and control registers values.

6.3 axiom-ethtap
This application is a daemon which can run on each node in the cluster to map Ethernet frames over
AXIOM-link messages. The daemon creates a virtual Ethernet device (TAP) on top of the AXIOM
NIC. The AXIOM Node ID is encoded in the MAC address of the virtual Ethernet device. In this way
it is easy to map each Ethernet frame on top of AXIOM LONG messages, where the destination Node
ID is decoded starting from the destination MAC address contained in the Ethernet frame.

6.4 axiom-netperf
This application can be used to estimate the throughput between two nodes. The idea of this tool is to
create a flood of packets (RAW, RDMA or LONG) with a given payload size to a given destination
node. The tool returns the transmission speed and the number of transmitted packets.
6.5 axiom-ping
This application is used to estimate the message round-trip time between two nodes. It works in a way
similar to the ping application on UNIX systems. AXIOM ping packets are handled on the receiving
node through axiom-init.

6.6 axiom-rdma
This application is used to issue a RDMA operation on a node. The application can be used as an ex-
ample, and is capable of dumping the content of the RDMA enabled zone.

6.7 axiom-recv
This application is used to issue a receive request for a RAW or LONG message on a port. The request
is selectable to be blocking or non-blocking.

6.8 axiom-run
This is the AXIOM process spawner (see deliverable D5.2), which is used to initialize the AXIOM
allocator and to start GASNet and OmpSs application on the nodes composing the cluster.

6.9 axiom-send
This application can be used to send a RAW or LONG message to a specific node.

6.10 axiom-traceroute
This application is used to provide a trace of the routing path between the current node and a remote
node. The application uses the services provided by the axiom-init daemon.

6.11 axiom-utility
This application can be used to flush stale messages remained unread in the AXIOM NIC message
queues.

6.12 axiom-whoami
This application prints the current node ID, set after the discovery algorithm has run.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 27 of 44

7 Initial AXIOM-link network configuration
The AXIOM NIC interface and applications described so far in the document allow to send and receive
packets between applications running in a cluster. It is assumed that each node has a unique ID in the
network (this is guaranteed by the discovery algorithm, see later), and that the network connections
supported should be both regular topologies (like a ring or a 2D mesh), or irregular (that is, the boards
are connected in a “pseudo-random” way).
We expect irregular topologies to be common in the “makers” community, where we cannot expect
users to have a precise knowledge about ring, mesh or other topologies. On the other hand, we can also
expect that irregular topologies will be the simpler to wire together, as they will typically require less
wires (as an example, consider two nodes: a ring topology will require two wires, whereas an irregular
topology can be obtained with just one wire).
For these reasons, we designed the system to allow an automatic configuration of the node IDs. At
startup, we suppose that all the boards are connected “somehow” each other using AXIOM-link wires.
One of the nodes is also connected to the outside world using Keyboard/Mouse/Video or Ethernet or
WiFi; that specific node where commands are launched first is then marked to be the “master” node.
The master node starts the discovery algorithm, and as a result, the system is configured with unique
node IDs. After that, the master node is responsible to compute and distribute the routing tables to all
nodes. All these steps are implemented inside the axiom-init daemon.
As a final step of network configuration, the axiom-ethtap application is run and proper MAC and
IP addresses will be assigned to each node (based on the AXIOM node ID). Having Ethernet addresses
configured this way also allows starting a remote filesystem, which could be resident in the master
node. This in turn would simplify the distribution of the AXIOM applications on the various nodes, as
the AXIOM applications needs to be copied only on the master node shared filesystem.

8 Possible extensions
We envision a set of improvements to be implemented on top of the AXIOM-link:

● Usage of memory mapped registers directly exposed to the user space. In this way, it will be
possible to avoid IOCTL system calls for each packet transfer, also reducing memory copies.
This requires sharing message queue descriptors between user and kernel spaces, and special
care will have to be done in order to provide mutual exclusion and synchronization between
different users.

● Usage of multiple hardware queues in order to enhance the parallelism on the same node. In
this way, it will be possible to statically allocate a queue to an application or to a core, which
will access the register set in an atomic and dedicated way without the need of synchroniza-
tion.

9 Confirmation of DoA objectives and Conclusions
This document provides the final version of deliverable D5.1, and is an improved version of the preview
delivered at month 24.
Other related publications of this project can be found in the references [9]-[47].

All the infrastructure has been tested on the real board and all the goals of the task T5.1 has been met.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 28 of 44

Appendix A
This appendix shortly describes the nodes discovery algorithm and the testing environment designed by
EVI to test the algorithm on several network connections scenarios.
The initial status of the discovery is that all nodes are connected with bi-directional point-to-point con-
nections, forming an unknown topology. Nodes ID has not been assigned yet. Each node has some
interfaces, numbered starting from 0. The user connects to a node by standard means (e.g., console,
WiFi) to a first node, which will be called “master” (note that potentially any node can be the master).
From the master node, the discovery algorithm is started by the axiom-init daemon run in “master”
mode. First, the master node will auto-assign the first available node ID, which is ID 1. The node then
initiates a recursive algorithm (summarized in pseudo-code in Figure 11) on all its interfaces, which
works as follows:

● If the neighbor node on the other side of a given interface already has an ID, skip it and go to
the next interface.

● If the neighbor node on the other side of a given interface does not have an ID, assign it the
next available ID, then start the discovery algorithm recursively on it.

● When all interfaces have been processed, return the next available ID to the calling node.

At the end of its execution, the discovery algorithm assigns the node IDs to all nodes of the network,
and also produces a table representing the topology of the network. Each row of the table represents a
point-to-point connection, which contains a pair of tuples (ID, interface) representing both endpoints of
the connection.

/* AXIOM Recursive Discovery Algorithm */
int ax_discovery(node, next_id)
{
 node.my_id = next_id++;
 for <each neighbor> {
 if <neighbor node already has an ID> {
 <skip it >
 } else {
 next_id = ax_discovery(neighbor, next_id);
 }
 }
 return next_id;
}

/* start the discovery algorithm on the master node */
next_id = 1;
ax_discovery(master, next_id);

Figure 11 – High-level description of the Nodes Discovery Algorithm.

The table, which is produced as a result of the discovery algorithm, is then used by the routing table
computation phase. In particular, the system computes, for each node, a local routing table useful to
reach each node. The local routing table contains, for each node in the cluster, the interface to which a
packet directed to that node should be forwarded. The algorithm is based on the shortest path routing
and provides only one possible forwarding interface for each node.
In order to test the correctness of the discovery algorithm implementation a wrapper of the AXIOM
RAW messaging API on top of Linux has been implemented. In this way, it has been possible to test
various topologies and analyze the correctness of the discovery algorithm and of the routing table com-
putation. The source code of this POSIX wrapper is available in the AXIOM Git repository [7]. This

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 29 of 44

wrapper was developed before the availability of the QEMU infrastructure described in Deliverable
D4.2, and has been deprecated after the QEMU setup was working.

Appendix B
The software package, which is part of this delivery, contains the code and the documentation. The
software package can be downloaded at the following address:

https://download.axiom-project.eu/?dir=RUNTIME

The content of the software package is described in the README.txt inside the software package. We
show it below:

 AXIOM D5.1 Software release
===

This archive contains software and documentations relative to D5.1 deliverable.
It is organized with the following directories:

* docs
 This directory contains the documentation of AXIOM BSP and AXIOM
 Software-Stack and it is organized with the following sub-folders:

 * BSP
 This folder contains the documentation of AXIOM Board and BSP:
 * WP6 - ARCHITECTURE IMPLEMENTATION_AXIOM board - AXIOM Wiki.html
 This page describes the AXIOM board. It is based on the Zynq®
 UltraScale+™ MPSoC XCZU9EG-1FFC900.

 * WP6 - ARCHITECTURE IMPLEMENTATION_BSP_ComponentsAndSources - AXIOM Wiki.html
 This page describes the tools and the components of the AXIOM BSP.

 * WP6 - ARCHITECTURE IMPLEMENTATION_BSP_FirstBoot - AXIOM Wiki.html
 This page describes how to use and create bootable SD with
 pre-compiled images and FileStystem.

 * WP6 - ARCHITECTURE IMPLEMENTATION_BSP_KERNEL_PowerMonitor - AXIOM Wiki.html
 This page explains how to monitor the power consumption using SYSFS
 and IOCTL interfaces.

 * WP6 - ARCHITECTURE IMPLEMENTATION_BSP_PetalinuxTool - AXIOM Wiki.html
 This page provides the desctiption of a sub-set of the PetaLinux's
 commands, useful to generate the AXIOM BSP.

 * WP6 - ARCHITECTURE IMPLEMENTATION_BSP_PMT - AXIOM_WIKI.html
 This page describes how to use a simple set of bash scripts to acquire
 data about power consumption.

 * WP6 - ARCHITECTURE IMPLEMENTATION_BSP_XGENIMAGE - AXIOM Wiki.html
 This page describes the xgenimage tool. It is a tool to generate OS
 image for the AXIOM Board.

 * SoftwareStack
 This folder contains the documentation of AXIOM Software Stack:
 * WP5 - AXIOM Software Stack - AXIOM Wiki.html
 This page contains instruction on how to get, install, and run the
 AXIOM NIC drivers and user-space applications developed for the
 AXIOM board.
 We added the following files that are linked in the wiki page above:
 * axiom-evi_README-v1.0.txt
 How to compile the AXIOM Software Stack and generate DEBs package
 for the AXIOM board.
 * axiom-evi-apps_README-v1.0.txt
 How to run AXIOM applications and utilities
 * axiom_nic_datasheet-v1.0.pdf
 Datasheet of the real AXIOM NIC peripheral on the FPGA
 * axiom-v1.0-doxygen-html.tgz
 Doxygen documentation HTML of the AXIOM Software Stack
 * axiom-evi-apps_tests_README-v1.0.txt

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 30 of 44

 How to run the AXIOM regression tests
 * axiom-evi_tests_gasnet_README-v1.0.txt
 How to run the GASNet regression tests
 * axiom-evi_tests_ompss_README-v1.0.txt
 How to run the OmpSS regression tests

* software
 This directory contains the source code developed and it is organized with
 the following sub-folders:

 * BSP
 This directory contains the Petalinux 2016.3 project. It is the main
 component of the Xilinx processing systems and it includes both hardware
 and software setting for the AXIOM board.
 * AXIOM-ZU9EG-2016.3_7948670.tar.gz

 * BSP_Component
 This directory contains the source code of Linux and U-Boot. The Linux
 kernel 4.6.0 and U-Boot 2016.07 are based on Xilinx kernel and customized
 for the AXIOM board.
 * linux-4.6.0-AXIOM-v2016.3_aa575e7.tar.gz
 * u-boot-2016.07-AXIOM-v2016.3_16eb184.tar.gz

 * FileSystem
 This directory contains File System with Ubuntu 16.04.
 The 'minimal' version contains only tools needed for the basic board usage.
 The 'desktop' version is built on the minimal version, adding Mate Desktop
 environment and the video graphical acceleration driver.
 * zynq-ubuntu-desktop_16.04-xenial_v1.3.tar.gz
 * zynq-ubuntu-minimal_16.04-xenial_v1.3.tar.gz

 * SoftwareStack
 This directory contains the archives of the source and DEBs of AXIOM Software
 Stack v1.0. It includes AXIOM drivers (NIC and MemoryDevice), AXIOM UserSpace
 libraries, AXIOM application, GASNet with AXIOM Conduit, Nanos and
 Mercurium with AXIOM support and several regression tests.
 * axiom-evi-software_stack_src_v1.0.tar.gz
 * axiom-evi-debs-v1.0.7z

 * Tools
 This directory contains the tool used to create a Ubuntu 16.04 based
 FileSystem. As output of the execution of the tool there is a FileSystem
 like the pre-build desktop one.
 * xgenimage_6c40bc3.tar.gz

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 31 of 44

Appendix C
The User Manual of the AXIOM BSP and boards has been included in the form of Wiki pages in the
internal AXIOM Wiki, in particular at the following pages:

 https://wiki.axiom-project.eu/index.php/WP6_-_ARCHITECTURE_IMPLEMENTA-
TION/BSP/PetalinuxTool
For the instructions on how to use the PetaLinux Tool.

 https://wiki.axiom-project.eu/index.php/WP6_-_ARCHITECTURE_IMPLEMENTA-
TION/BSP/XGenImage
For the instructions on how to use the XGENIMAGE Tool

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 32 of 44

  https://wiki.axiom-project.eu/index.php/WP5_-_AXIOM_Software_Stack
For the instructions on how to use the AXIOM software stack.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 33 of 44

A copy of the main Wiki documents has been included in the software package which is part of this
delivery.

We show below the most important files available in text form. These files are written in Markdown
language to be shown in a web-based Git repository manager. Instead the Wiki pages previously de-
scribed are available in HTML form in the software package to be easily consulted.

 axiom-evi_README-v0.14.txt
This file explains how to compile the AXIOM Software Stack and generate DEBs package for the
AXIOM board.

 AXIOM Software Stack
===

This repository contains the following git sub-modules:

 * axiom-allocator
 + Implementation of the three level AXIOM allocator
 * axiom-evi-allocator-drv
 + Implementation of the memory device to handle virtual to physical memory mapping
 * axiom-evi-allocator-lib
 + Implementation of 3rd level software allocator based on LMM
 * axiom-evi-apps

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 34 of 44

 + Implementation of AXIOM application and daemons (axiom-init, axiom-run, etc.)
 * axiom-evi-extrae
 + Modified version of Extrae to support IOCTL and AXIOM api
 * axiom-evi-gasnet
 + Modified version of GASNet that includes the new AXIOM conduit
 * axiom-evi-mcxx
 + Modified version of mcxx to support AXIOM GASNet conduit and cross-compilation
 * axiom-evi-nanox
 + Modified version of nanox to support AXIOM GASNet conduit and cross-compilation
 * axiom-evi-nic
 + Implementation of AXIOM NIC device driver and User Space libraries

1. Prerequisite to build the Software Stack

For the last release of the requested software see Axiom wiki.
``` 
https://wiki.axiom-project.eu/index.php/WP5_-_AXIOM_Software_Stack 
https://wiki.axiom-project.eu/index.php/WP6_-_ARCHITECTURE_IMPLEMENTATION/BSP/Compo-
nentsAndSources 
``` 

1.1 Axiom file-system

You must have a copy of the Axiom file-system.
``` 
$ wget -c https://upload.axiom-project.eu/uploads/WP5.1/filesystems/aarch64/zynq-ubuntu-
minimal_16.04-xenial_v1.3.tar.gz 
$ mkdir zynq-ubuntu-minimal_16.04-xenial_v1.3 
$ ln -s zynq-ubuntu-minimal_16.04-xenial_v1.3 zynq-rootfs 
$ cd zynq-ubuntu-minimal_16.04-xenial_v1.3 
$ tar xvf ../zynq-ubuntu-minimal_16.04-xenial_v1.3.tar.gz 
``` 

1.2 Linaro

You must have the Linaro toolchain for AARCH64.
The directory of the Linaro toolchain must have a specific structure and must have
some link as show below.
You should use these linaro packages:
 * gcc-linaro-5.3.1-2016.05-x86_64_aarch64-linux-gnu.tar.xz
 * runtime-gcc-linaro-5.3.1-2016.05-aarch64-linux-gnu.tar.xz
 * sysroot-glibc-linaro-2.21-2016.05-aarch64-linux-gnu.tar.xz

``` 
$ mkdir linaro 
$ cd linaro 
$ wget -c  https://releases.linaro.org/components/toolchain/binaries/5.3-2016.05/aarch64-
linux-gnu/gcc-linaro-5.3.1-2016.05-x86_64_aarch64-linux-gnu.tar.xz 
$ wget -c  https://releases.linaro.org/components/toolchain/binaries/5.3-2016.05/aarch64-
linux-gnu/runtime-gcc-linaro-5.3.1-2016.05-aarch64-linux-gnu.tar.xz 
$ wget -c  https://releases.linaro.org/components/toolchain/binaries/5.3-2016.05/aarch64-
linux-gnu/sysroot-glibc-linaro-2.21-2016.05-aarch64-linux-gnu.tar.xz 
$ tar xJvf gcc-linaro-5.3.1-2016.05-x86_64_aarch64-linux-gnu.tar.xz 
$ tar xJvf runtime-gcc-linaro-5.3.1-2016.05-aarch64-linux-gnu.tar.xz 
$ tar xJvf sysroot-glibc-linaro-2.21-2016.05-aarch64-linux-gnu.tar.xz 
$ ln -s gcc-linaro-5.3.1-2016.05-x86_64_aarch64-linux-gnu host 
$ ln -s sysroot-glibc-linaro-2.21-2016.05-aarch64-linux-gnu sysroot 
$ ln -s . host/usr 
$ ln -s /usr/bin/pkg-config host/bin/aarch64-linux-gnu-pkg-config 
$ cd .. 
``` 

1.3 Petalinux

You should have installed Petalinux.
``` 
$ wget -c https://upload.axiom-project.eu/uploads/WP5.1/tools/petalinux-v2016.3-final-
installer.run 
$ ./petalinux-v2016.3-final-installer.run 
$ ln -s petalinux-v2016.3-final petalinux 
 
``` 

1.4 Axiom BSP

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 35 of 44

You must have installed the last Axiom BSP.
``` 
$ mkdir bsp 
$ cd bsp 
$ wget -c https://upload.axiom-project.eu/uploads/WP5.1/BSP_pre-built/AXIOM-ZU9EG-BSP-
2016.3_v1.6.bsp 
$ mv AXIOM-ZU9EG-BSP-2016.3_v1.6.bsp AXIOM-ZU9EG-BSP-2016.3_v1.6.bsp.tar.gz 
$ tar xzvf  AXIOM-ZU9EG-BSP-2016.3_v1.6.bsp.tar.gz 
$ mv AXIOM-ZU9EG-2016.3 AXIOM-ZU9EG-BSP-2016.3_v1.6 
$ ln -s AXIOM-ZU9EG-BSP-2016.3_v1.6 AXIOM-ZU9EG-2016.3 
$ cd .. 
``` 

1.5 Compile the kernel using Petalinux

You must compile the kernel.
``` 
$ source petalinux/settings.sh 
$ cd bsp/AXIOM-ZU9EG-2016.3 
$ petalinux-config --verbose -c kernel 
$ petalinux-build --verbose 
$ petalinux-package --boot 
``` 
WARNING: sourcing 'petalinux/settings.sh' inserts into the environment a toolchain
that does not work to build the Axiom software stack. You must clean the environment to
build the Axiom software stack.

WARNING: petalinux suggest to use bash as default system shell
``` 
$ sudo ln -sf /bin/bash /bin/sh 
``` 

2. Download the code

2.1 Clone the repository
``` 
$ git clone https://git.axiom-project.eu/axiom-evi 
$ cd axiom-evi 
``` 
NOTE:
Can be useful to add the following line to ~/.ssh/config
``` 
Host git.axiom-project.eu 
     HostName git.axiom-project.eu 
     Port 22 
     User YOUR_AXIOM_PROJECT_NAME 
 
``` 
and to add some lines to ~/.gitconfig
``` 
[user] 
        name = YOUR_NAME 
        email = YOUR_EMAIL 
[http] 
        sslverify = false 
 
[credential] 
        helper = store 
 
``` 

2.2 Init the sub-modules (may take awhile)
``` 
$ ./scripts/submodules_update.sh 
``` 

3. AXIOM Software Stack compilation

This section explains how to configure and compile the AXIOM sub-modules.

Requirements:

Note that some packages required for a build can be missing.
For example into a Ubuntu 16.04 LTS you should have installed the following packages:
``` 



Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era 
Grant Agreement Number: 645496 
Call: ICT-01-2014: Smart Cyber-Physical Systems 
 

Deliverable number: D5.1 
Deliverable name: Operating system and documentation 
File name: AXIOM_D51-v17.docx  Page 36 of 44 

$ sudo apt-get install build-essential git libssl-dev libncurses5-dev gawk bison wget 
$ sudo apt-get install flex bc pkg-config libglib2.0-dev libfdt-dev libpixman-1-dev 
zlib1g-dev 
$ sudo apt-get install linux-tools-generic linux-headers-generic autoconf automake 
gfortran libxml2-dev 
$ sudo apt-get install libtool-bin libsqlite3-dev gperf debhelper fakeroot fakechroot 
qemu-user-static 
$ sudo apt-get install automake autoconf libtool 
 
``` 

3.1 Prepare the system

Change the environment variables into ```axiom-evi/settings.sh```.

* PETALINUX
 + You must have installed PetaLinux 2016.3; this must point to the installation
directory
 + (default ```$HOME/petalinux```)

* AXIOMBSP
 + You must have installed SECO Petalinux project BSP; this must point to the BSP
directory
 + (default ```$HOME/bsp/AXIOM-ZU9EG-2016.3```)

* LINARO
 + You must have a linaro toolchain; this must point to the linaro directory
 + (default $HOME/linaro)
 + You should use these linaro packages:
 * gcc-linaro-5.3.1-2016.05-x86_64_aarch64-linux-gnu.tar.xz
 * runtime-gcc-linaro-5.3.1-2016.05-aarch64-linux-gnu.tar.xz
 * sysroot-glibc-linaro-2.21-2016.05-aarch64-linux-gnu.tar.xz
 + The linaro installation directory must have the following layout:
``` 
            ${LINARO}/ 
            ${LINARO}/runtime-gcc-linaro-5.3.1-2016.05-aarch64-linux-gnu 
            ${LINARO}/sysroot-glibc-linaro-2.21-2016.05-aarch64-linux-gnu 
            ${LINARO}/gcc-linaro-5.3.1-2016.05-x86_64_aarch64-linux-gnu 
            ${LINARO}/host (link to gcc-linaro-5.3.1-2016.05-x86_64_aarch64-linux-gnu) 
            ${LINARO}/sysroot (link to sysroot-glibc-linaro-2.21-2016.05-aarch64-linux-
gnu) 
``` 

 + After the installation you must create a symbolic link "usr" to linaro/host
directory:
``` 
            cd ${LINARO}/host 
            ln -s . usr 
``` 

 + Then you must create a link "aarcha64-linux-gnu-pkg-config" to pkg-config:
``` 
            cd ${LINARO}/host/usr/bin 
            ln -s /usr/bin/pkg-config aarcha64-linux-gnu-pkg-config 
``` 

* ROOTFS
 + You must have extracted the Seco Ubuntu file-system image; this must point to the
installation directory
 + (default $HOME/zynq-rootfs)
 + Usually $HOME/zynq-rootfs is a link to $HOME/zynq-ubuntu-minimal_16.04-xenial_v1.3

 + NOTE: in zynq-rootfs/usr/lib/aarch64-linux-gnu there are .so with absolute link.
 Extrae try to use libdl.so (link to /lib/aarch64-linux-gnu/libdl.so.2)
 To fix this issue:
``` 
        cd zynq-rootfs/usr/lib/aarch64-linux-gnu 
        rm libdl.so 
        ln -s ../../../lib/aarch64-linux-gnu/libdl.so.2 libdl.so 
``` 

* ROOTFSARCH
 + You must have a copy of the rootfs archive
 + (default $HOME/zynq-ubuntu-minimal_16.04-xenial_v1.3.tar.gz)

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 37 of 44

3.2 Compile the system

3.2.1 Include settings file

To compile the system you must include the settings.sh into your environment, before to
use the Makefile

``` 
    $ source axiom-evi/settings.sh 
``` 

Note that the environment must be clean (i.e. you can not include the petalinux's
settings)

3.2.2 Define ```make``` variables

If you go into the ```scripts``` directory and do the command ```make``` for the first
time, an help will be show:
``` 
    $ cd scripts 
    $ make 
    configure.mk:113: *** Command line environment variables not defined! 
    You must define some variable on the command line (for example "make MODE=aarch64"): 
    * MODE (required) 
       aarch64: use linaro to cross-compile for arm 64bit 
       x86: use native x86 kernel on rootfs 
    * DISABLE_INSTR (optional, used during libraries compilation) 
       0: compile EXTRAE and nic user library with instrumentation support (default) 
       1: disable EXTRAE compilation and nic user library instrumentation 
    * KVERSION (optional, used to compile X86 in a chroot) 
       you must defined this if you are compiling for X86 from a chroot and must be 
       set to the kernel version (otherwise a "uname -r" is used using the chroot host 
       kernel version) 
    * DFLAGS (optional, other gcc parameters to add during compilation 
    Note that: 
    MODE and DISABLE_INSTR must defined during "make configure" and never changed. 
    KVERSION should be defined only for X86 chroot compilation during "make configure". 
).  Stop. 
 
``` 

3.2.3 Configure the system

``` 
    $ make MODE=aarch64 DISABLE_INSTR=0 configure 
``` 

you can change parameters as specified in the 3.2.2 section

3.2.4 Compile the system

``` 
    $ make all 
``` 


3.2.5 Generate DEB packages

``` 
    $ make deb 
``` 
The debian packages are generated into the ```axiom-evi/debs``` directory.

``` 
    $ make deb-tests 
``` 
Generate the tests debian packages.

3.3 Handle temp overlay rootfs

During the compilation, we need some overlay rootfs to build the packages.
To umount these directories:

``` 



Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era 
Grant Agreement Number: 645496 
Call: ICT-01-2014: Smart Cyber-Physical Systems 
 

Deliverable number: D5.1 
Deliverable name: Operating system and documentation 
File name: AXIOM_D51-v17.docx  Page 38 of 44 

    $ make umount-temp 
``` 

After the first compilation of all packages, if you want to compile in the sub-module
directory,
you must mount these overlay roots:
``` 
    $ make mount-temp 
``` 
Note that a temp overlay rootfs is mounted under ~/axiom-evi/rootfs-tmp and is used
to install the sub-projects applications/libraries; this rootfs must be mounted if you use
the make command from the sub-projects; this can be accomplished using the following
command from the ~/axiom-evi/scripts directory

3.4 Update the sub-modules

The best way to compile a new release is to clear the previous compilation to be sure to
have a clean state and update each sub-modules.

``` 
    $ cd axiom-evi/scripts 
    $ make mrproper 
    $ ./submodules_pull.sh 
    $ make MODE=XXX DISABLE_INSTR=XXX configure 
    $ make all 
``` 

3.4 Note for x86 compilation

* the user that compile the software must be into the sudoers file (but it is not
necessary to use a "sudo make")
* the system shell should be bash, so there must be a link from /bin/sh to bash
* the linux-tools-generic and linux-headers-generic packages must be installed

4. Note to compile an AXIOM application

4.1 Standalone application

You must link your application using the supplied linker script.
(This script include some entry point requested by the axiom memory manager).
You should add something like this into the makefile:
``` 
LDFLAGS += -Wl,-T~/axiom-evi/axiom-evi-allocator-lib/ldscript/aarch64/xs_map64.lds 
``` 
or, if you are compiling on the board,
``` 
LDFLAGS += -Wl,-T/usr/axiom-evi-allocator-lib/xs_map64.lds 
``` 
You could also use pkg-config:
``` 
pkg-config --libs evi_lmm 
``` 

4.2 OMPSS@Cluster application

To compile a OMPSS@Cluster application you should use these flags for mercurium
``` 
MCCFLAGS := --ompss --cluster 
``` 
during compilation. You must use the following flags during the link phase
``` 
LDFLAGS += --rdynamic -Wl,-T~/axiom-evi/axiom-evi-allocator-
lib/ldscript/aarch64/xs_map64.lds 
``` 
NOTE The ```--rdynamic``` flag is required otherwise the symbols from the supplied
linker script will be discharged.

5 Note

5.1 OMPSS@Cluster

5.1.1 Command line options

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 39 of 44

A new command-line options has been added: ```--use-my-cpus-number``` and can be zero
(default) or one.
It is used to force the use of ```--smp-cpus``` parameters because, otherwise, this
parameter can be set to a value greater than the number of cores of the microprocessor.

Example:
``` 
$ export NX_ARGS="--num-sockets=1 --cpus-per-socket=4 --smp-cpus=4" 
``` 
this is the default for an AXIOM board if no parameter are passed. OMPSS create 4 physical
thread and assign each to a core of the microprocessor then assign 4 working thread to
these physical threads.

``` 
$ export NX_ARGS="--num-sockets=1 --cpus-per-socket=5 --smp-cpus=5 --use-my-cpu-number=1" 
``` 
this create one more physical thread that share a core of the microprocessor and use it
for a working thread.

``` 
$ export NX_ARGS="--num-sockets=1 --cpus-per-socket=5 --smp-cpus=5 --use-my-cpu-number=1 -
-cluster --cluster-network=axiom --cluster-smp-presend=4" 
``` 
this create a physical thread for communication that share a core with 1 of the 4 working
thread on each board.

5.1.2 Scheduling policy

When you run a OMPSS@Cluster application you can define some environment variable to
change
the scheduling policy of the system threads: ```AXIOM_WRK_PARAMS``` (for the working
threads) and ```AXIOM_COM_PARAMS``` (for the communication threads)

The general form of the assignment is:
``` 
schedpol,par0,par1,par2 
``` 
in which ```par0```, ```par1``` and ```par2``` are optional and depend on ```schedpol```.

```schedpol``` can be: 
 
* OTHER using the default linux policy 
    + ```par0``` is the nice value (default to 0) 
* FIFO using the FiFo real-time policy 
    + ```par0``` is the priority (default to 1) 
* RR using the RoundRobin real-time policy 
    + ```par0``` if the priority (default to 1) 
* BATCH using Batch policy, no parameters 
* IDLE using the Idle policy, no parameters 
* DEADLINE using the Deadline scheduling policy 
    + ```par0``` is the execution time 
    + ```par1``` is the deadline time 
    + ```par2``` is the period time 
     
    the time is specified using a units: 
     
    + ```us``` micro-seconds 
    + ```ms``` milli-seconds 
    +  seconds otherwise 
 
    the ```par0``` can also be specified using ```%``` of the period time 
 
Examples: 
``` 
$ export AXIOM_WRK_PARAMS=RR,2
$ export AXIOM_COM_PARRAMS=DEADLINE,10ms,80ms,100ms
``` 
or 
``` 
$ export AXIOM_WRK_PARAMS=OTHER,10
$ export AXIOM_COM_PARRAMS=DEADLINE,2%,800us,10ms
``` 
 
## 6 Example of build ARM64 debs on a fresh Ubuntu 16.04 LTS host PC 
 



Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era 
Grant Agreement Number: 645496 
Call: ICT-01-2014: Smart Cyber-Physical Systems 
 

Deliverable number: D5.1 
Deliverable name: Operating system and documentation 
File name: AXIOM_D51-v17.docx  Page 40 of 44 

``` 
 # Install missing packages in the host PC

 $ sudo apt-get install build-essential git libssl-dev libncurses5-dev gawk \
 bison wget flex bc pkg-config libglib2.0-dev libfdt-dev libpixman-1-dev \
 zlib1g-dev linux-tools-generic linux-headers-generic autoconf automake \
 gfortran libxml2-dev vim libtool-bin libsqlite3-dev gperf debhelper \
 fakeroot fakechroot qemu-user-static

 # Petalinux 2016.3 installation

 $ mkdir ~/petalinux
 $ wget --no-check-certificate --user=YOUR_USERNAME --ask-password
https://upload.axiom-project.eu/uploads/WP5.1/tools/petalinux-v2016.3-final-installer.run
 $ chmod +x petalinux-v2016.3-final-installer.run
 $./petalinux-v2016.3-final-installer.run ~/petalinux

 # Linaro 5.3.1-2016.05 installation

 $ mkdir ~/linaro
 $ cd ~/linaro
 $ wget https://releases.linaro.org/components/toolchain/binaries/5.3-2016.05/aarch64-
linux-gnu/gcc-linaro-5.3.1-2016.05-x86_64_aarch64-linux-gnu.tar.xz
 $ wget https://releases.linaro.org/components/toolchain/binaries/5.3-2016.05/aarch64-
linux-gnu/sysroot-glibc-linaro-2.21-2016.05-aarch64-linux-gnu.tar.xz
 $ wget https://releases.linaro.org/components/toolchain/binaries/5.3-2016.05/aarch64-
linux-gnu/runtime-gcc-linaro-5.3.1-2016.05-aarch64-linux-gnu.tar.xz
 $ tar xf https://releases.linaro.org/components/toolchain/binaries/5.3-
2016.05/aarch64-linux-gnu/gcc-linaro-5.3.1-2016.05-x86_64_aarch64-linux-gnu.tar.xz
 $ tar xf https://releases.linaro.org/components/toolchain/binaries/5.3-
2016.05/aarch64-linux-gnu/sysroot-glibc-linaro-2.21-2016.05-aarch64-linux-gnu.tar.xz
 $ tar xf https://releases.linaro.org/components/toolchain/binaries/5.3-
2016.05/aarch64-linux-gnu/runtime-gcc-linaro-5.3.1-2016.05-aarch64-linux-gnu.tar.xz
 $ ln -s gcc-linaro-5.3.1-2016.05-x86_64_aarch64-linux-gnu host
 $ ln -s sysroot-glibc-linaro-2.21-2016.05-aarch64-linux-gnu sysroot
 $ cd ~/linaro/host
 $ ln -s . usr
 $ cd ~/linaro/host/usr/bin
 $ ln -s /usr/bin/pkg-config aarcha64-linux-gnu-pkg-config

 # Download AXIOM root file-system

 $ mkdir ~/zynq-rootfs
 $ wget --no-check-certificate --user=YOUR_USERNAME --ask-password
https://upload.axiom-project.eu/uploads/WP5.1/filesystems/aarch64/zynq-ubuntu-
minimal_16.04-xenial_v1.3.tar.gz
 $ tar xfz zynq-ubuntu-minimal_16.04-xenial_v1.3.tar.gz -C zynq-rootfs/
 $ cd zynq-rootfs/usr/lib/aarch64-linux-gnu
 $ rm libdl.so
 $ ln -s ../../../lib/aarch64-linux-gnu/libdl.so.2 libdl.so

 # Download AXIOM Petalinux project BSP

 $ mkdir ~/bsp
 $ cd ~/bsp
 $ git config --global http.sslVerify false
 $ git clone https://git-private.axiom-project.eu/AXIOM-ZU9EG-2016.3/
 $ git checkout axiom_ni # for now the FORTH bit-stream is not merge in the master
branch
 $ source ~/petalinux/settings.sh
 $ cd ~/bsp/AXIOM-ZU9EG-2016.3/
 $ petalinux-build

 # AXIOM Software Stack

 $ # note: you must use another shell or clean the setting of petalinux
 $ su - $(whoami)
 $ git clone https://git.axiom-project.eu/axiom-evi
 $ cd axiom-evi
 $./scripts/submodules_update.sh
 $ source settings.sh
 $ cd scripts/
 $ make MODE=aarch64 DISABLE_INSTR=0 configure
 $ make all
 $ make deb

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 41 of 44

``` 
 
  axiom-evi-apps_README-v0.14.txt 

This file explains how to run AXIOM applications and utilities useful for the cluster setup and 
network troubleshooting. 

                            AXIOM NIC applications 
=============================================================================== 
 
This repository contains the following user space application: 
 
 * axiom-init 
    + axiom-init is the main daemon running on all nodes of the cluster. 
    It runs the discovery algorithm, sets the routing table and handles control messages. 
    It will be run automatically by the system or through axiom-startup.sh script. 
``` 
 example:

 # in n-1 nodes
 axiom-init &

 # in the master node
 axiom-init -m &
``` 
 * axiom-ethtap 
    + axiom-ethtap is another deamon that can run on each nodes in the cluster 
    to map the ethernet frames over AXIOM messages. 
    It creates a virtual ethernet device on top of AXIOM device. 
    It will be run automatically by the system or through axiom-startup.sh script. 
``` 
 example:
 # start axiom-ethtap with 4 threads
 axiom-ethtap -n 4
``` 
 * axiom-info 
    + print informations (node-id, interfaces, routing, etc.) about AXIOM NIC 
``` 
 example:
 # print all information
 axiom-info
``` 
``` 
 # print nodeid
 axiom-info -n
``` 
``` 
 # print routing table
 axiom-info -r
``` 
 * axiom-whoami 
     + print the node-id set after the discovery phase 
``` 
 example:
 axiom-whoami
``` 
 * axiom-ping 
    + estimate the round trip time (RTT) between two nodes 
``` 
 example:
 # Estimate RTT with target node 2. Send a ping message every 0.5 seconds.
 axiom-ping -d 2 -i 0.5
``` 
``` 
 # Estimante RTT with target node 2. Send 10 ping message every 0.2 seconds.
 axiom-ping -d 2 -c 10 -i 0.2
``` 
 * axiom-netperf 
    + estimate the throughput between two nodes 
``` 
 example:
 # start server on one node with 8 threads
 axiom-netperf -s -n 8

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.1
Deliverable name: Operating system and documentation
File name: AXIOM_D51-v17.docx Page 42 of 44

 # Estimate the throughput with targat node 3, sending 512 KBytes of data
 # using RAW messages.
 axiom-netperf -d 3 -l 512K -t raw
``` 
``` 
 # Estimate the throughput with targat node 3, sending 2 MBytes of data.
 # using LONG messages and 2 sending threads.
 axiom-netperf -d 3 -l 2M -t long -n 2
``` 
 * axiom-traceroute 
    + print the hops needed to reach a specified target node 
``` 
 example:
 # Print the hops needed to reach the node 1
 axiom-traceroute -d 1
``` 
 * axiom-[send|recv] 
     + send/receive Axiom RAW/LONG data to/from a node 
``` 
 examples:
 # receive RAW message
 axiom-recv -t raw
``` 
``` 
 # receive LONG message
 axiom-recv -t long
``` 
``` 
 # send RAW data to node (node_id=4) with a specified payload
 axiom-send -t raw -d 4 112 43 0 57 33
``` 
``` 
 # send RAW data to a neighbour directly connected on a local
 # interface (if_id=1) with a specified payload
 axiom-send -t raw -d 1 --neighbour 67 52 1 0 1 0
``` 
``` 
 # send LONG data to node (node_id=0) with a specified payload
 axiom-send -t long -d 0 112 43 0 57 33
``` 
 * axiom-rdma 
     + use RDMA features (remote write, remote read) of Axiom NIC 
``` 
 examples:
 # dump local RDMA zone (starting from offset 0 to 1023)
 axiom-rdma -m d -s 1k
``` 
``` 
 # store in the local RDMA zone (starting from offset 1024 to 2043)
 # the bytes (1, 2, 3, 4) repeated many times to fill the size
 # specified
 axiom-rdma -m s -o 1k -s 1k 1 2 3 4
``` 
``` 
 # write 3072 bytes in the RDMA zone of node 3 (offset 2048) reading
 # from the local RDMA zone (offset 1024)
 axiom-rdma -m w -n 3 -o 1k -O 2k -s 3k
``` 
``` 
 # read 4096 bytes in the RDMA zone of node 2 (offset 7168) reading
 # from the local RDMA zone (offset 0)
 axiom-rdma -m r -n 2 -O 7k -s 4k
``` 
 * axiom-run 
    + spawn application on multiple nodes 
``` 
 # run ls on remote node 1 (-n) and redirect (-r) the stdin/stdout/stderr
 axiom-run -n 1 -r ls
``` 
``` 
 # run ls on all nodes, redirect (-r) the stdin/stdout/stderr and print
 # the node id in each line (-i)
 axiom-run -r -i ls
``` 



Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era 
Grant Agreement Number: 645496 
Call: ICT-01-2014: Smart Cyber-Physical Systems 
 

Deliverable number: D5.1 
Deliverable name: Operating system and documentation 
File name: AXIOM_D51-v17.docx  Page 43 of 44 

References 
1. AXIOM NIC Datasheet, axiom_nic_datasheet-v1.0.pdf  (https://download.axiom-project.eu/?dir=RUNTIME ) 
2. Luigi Rizzo, Revisiting network I/O APIs: The Netmap Framework, Communications of the ACM, March 2012. 
3. AXIOM API, Doxygen generated file, axiom-v1.0-doxygen.pdf axiom-v1.0-doxygen-html.tgz (https://download.ax-

iom-project.eu/?dir=RUNTIME ) 
4. https://store.arduino.cc/arduino-4-relays-shield 
5. https://opencores.org/project,avr_core 
6. https://wiki.axiom-project.eu/index.php/WP6_-_ARCHITECTURE_IMPLEMENTATION/BSP/ComponentsAnd-

Sources 
7. POSIX wrapper for the network discovery algorithm: https://git.axiom-project.eu/axiom-evi-apps/tree/master/axiom-

init/axiom-discovery/test/ 
8. AXIOM Git Repository for the PetalLinux BSP: https://git-private.axiom-project.eu/AXIOM-ZU9EG-2016.3/ 
9. R. Giorgi, “Transactional memory on a dataflow architecture for accelerating Haskell,” WSEAS Trans. Computers, 

vol. 14, pp. 794–805, 2015. 
10. R. Giorgi and P. Faraboschi, “An introduction to DF-Threads and their execution model,” in IEEE MPP, Paris, France, 

Oct. 2014, pp. 60–65. 
11. R. Giorgi and A. Scionti, “A scalable thread scheduling co-processor based on data-flow principles,” ELSEVIER Fu-

ture Generation Computer Systems, vol. 53, pp. 100–108, July 2015. 
12. S. Weis, A. Garbade, B. Fechner, A. Mendelson, R. Giorgi, and T. Ungerer, “Architectural support for fault tolerance 

in a Teradevice dataflow system,” Springer Int.l Journal of Parallel Programming, pp. 1–25, May 2014. 
13. D. Theodoropoulos et al., “The AXIOM project (agile, extensible, fast I/O module),” in IEEE Proc. 15th Int.l Conf. on 

Embedded Computer Systems: Architecture, MOdeling and Simulation, July 2015. 
14. R. Giorgi, "Scalable Embedded Systems: Towards the Convergence of High-Performance and Embedded Computing", 

Proc. 13th IEEE/IFIP Int.l Conf. on Embedded and Ubiquitous Computing (EUC 2015), Oct. 2015. 
15. R. Giorgi, "Exploring Future Many-Core Architectures: The TERAFLUX Evaluation Framework", Elsevier, 2017, pp. 

33-72.  
16. R. Giorgi, "Exploring Dataflow-based Thread Level Parallelism in Cyber-Physical Systems", Proc. ACM Int.l Conf. 

on Computing Frontiers, New York, NY, USA, 2016, pp. 6. 
17. A. Rizzo, G. Burresi, F. Montefoschi, M. Caporali, R. Giorgi, "Making IoT with UDOO", Interaction Design and Ar-

chitecture(s), vol. 1, no. 30, Dec. 2016, pp. 95-112. 
18. L. Verdoscia, R. Giorgi, "A Data-Flow Soft-Core Processor for Accelerating Scientific Calculation on FPGAs", Math-

ematical Problems in Engineering, vol. 2016, no. 1, Apr. 2016, pp. 1-21. 
19. R. Giorgi, N. Bettin, P. Gai, X. Martorell, A. Rizzo, "AXIOM: A Flexible Platform for the Smart Home", Springer 

Int.l Publishing, Cham, 2016, pp. 57-74. 
20. P. Burgio, C. Alvarez, E. Ayguade, A. Filgueras, D. Jimenez-Gonzalez, X. Martorell, N. Navarro, R. Giorgi, "Simulat-

ing next-generation cyber-physical computing platforms", Ada User Journal, vol. 37, no. 1, Mar. 2016, pp. 59-63. 
21. R. Giorgi, "AXIOM: A 64-bit reconfigurable hardware/software platform for scalable embedded computing", 6th 

Mediterranean Conf. on Embedded Computing (MECO), June 2017, pp. 113-116. 
22. R. Giorgi, "Accelerating Haskell on a Dataflow Architecture: a case study including Transactional Memory", Proc. 

Int.l Conf. on Computer Engineering and Applications (CEA), Dubai, UAE, Feb. 2015, pp. 91-100. 
23. N. Ho, A. Mondelli, A. Scionti, M. Solinas, A. Portero, R. Giorgi, "Enhancing an x86_64 Multi-Core Architecture 

with Data-Flow Execution Support", ACM Computing Frontiers, May 2015, pp. 1-2. 
24. N. Ho, A. Portero, M. Solinas, A. Scionti, A. Mondelli, P. Faraboschi, R. Giorgi, "Simulating a Multi-core x86-64 Ar-

chitecture with Hardware ISA Extension Supporting a Data-Flow Execution Model", IEEE Proc. AIMS-2014, Madrid, 
Spain, Nov. 2014, pp. 264-269. 

25. A. Portero, A. Scionti, Z. Yu, P. Faraboschi, C. Concatto, L. Carro, A. Garbade, S. Weis, T. Ungerer, R. Giorgi, "Sim-
ulating the Future kilo-x86-64 core Processors and their Infrastructure", 45th Annual Simulation Symp. (ANSS12), 
Orlando, FL, Mar 2012, pp. 62-67. 

26. Argollo, E., Falcón, A., Faraboschi, P., Monchiero, M., and Ortega, D. 2009. COTSon: infrastructure for full system 
simulation. SIGOPS Oper. Syst. Rev. 43, 1 (Jan. 2009), 52-61. 

27. B.W.L. Cheung, C.L. Wang, Kai Hwang; “JUMP-DP: A Software DSM System with Low-Latency Communication 
Support”, Int’l Conf. on Parallel and Distributed Processing Techniques and Applications (PDPTA2000), pp. 445-451, 
June 2000. 

28. E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. 
Lumsdaine, R.H. Castain, D.J. Daniel, R.L. Graham, and T.S. Woodall, “Open MPI: Goals, Concept, and Design of a 



Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era 
Grant Agreement Number: 645496 
Call: ICT-01-2014: Smart Cyber-Physical Systems 
 

Deliverable number: D5.1 
Deliverable name: Operating system and documentation 
File name: AXIOM_D51-v17.docx  Page 44 of 44 

Next Generation MPI Implementation”, In Proc. 11th European PVM/MPI Users' Group Meeting, Budapest, Hungary, 
Sep. 2004. 

29. L. Verdoscia, R. Vaccaro, R. Giorgi, "A matrix multiplier case study for an evaluation of a configurable Dataflow-
Machine", ACM CF'15 - LP-EMS, May 2015, pp. 1-6. DOI:10.1145/2742854.2747287 

30. G. Burresi, R. Giorgi, "A Field Experience for a Vehicle Recognition System using Magnetic Sensors", IEEE MECO 
2015, Budva, Montenegro, June 2015, pp. 178-181. DOI:10.1109/MECO.2015.7181897, 

31. A. Mondelli, N. Ho, A. Scionti, M. Solinas, A. Portero, R. Giorgi, "Dataflow Support in x86-64 Multicore Architec-
tures through Small Hardware Extensions", IEEE Proc. DSD, August 2015, pp. 526-529.. DOI: 10.1109/DSD.2015.62 

32. C. Alvarez, E. Ayguade, J. Bueno, A. Filgueras, D. Jimenez-Gonzalez, X. Martorell, N. Navarro, D. Theodoropoulos, 
D. Pnevmatikatos, C. Scordino, P. Gai, C. Segura, C. Fernandez, D. Oro, J. Saeta, P. Passera, A. Pomella, A. Rizzo, R. 
Giorgi, "The AXIOM Software Layers", IEEE Proc. 18th EUROMICRO-DSD, Aug. 2015, pp. 117-124. 
DOI:10.1109/DSD.2015.52 

33. D. Jiménez-González, C. Álvarez, A. Filgueras, X. Martorell, J. Langer, J. Noguera, K. Vissers. “Coarse-grain perfor-
mance estimator for heterogeneous parallel computing architectures like Zynq all-programmable SoC”. arXiv preprint 
arXiv:1508.06830. 

34. R. Giorgi, A. Scionti, "A scalable thread scheduling co-processor based on data-flow principles", ELSEVIER Future 
Generation Computer Systems, Amsterdam, Netherlands, vol. 53, Dec. 2015, pp. 100-108. DOI:10.1016/j.fu-
ture.2014.12.014 

35. R. Giorgi, "Exploring Dataflow-based Thread Level Parallelism in Cyber-physical Systems", Proc. ACM Int.l Conf. on 
Computing Frontiers, New York, NY, USA, 2016, pp. 6. DOI:10.1145/2903150.2906829 

36. C. Alvarez, E. Ayguade, J. Bosch, J. Bueno, A. Cherkashin, A. Filgueras, D. Jiminez-Gonzalez, X. Martorell, N. Na-
varro, M. Vidal, D. Theodoropoulos, D. Pnevmatikatos, D. Catani, D. Oro, C. Fernandez, C. Segura, J. Rodriguez, J. 
Hernando, C. Scordino, P. Gai, P. Passera, A. Pomella, N. Bettin, A. Rizzo, R. Giorgi, "The AXIOM Software Lay-
ers", ELSEVIER Microprocessors and Microsystems, vol. 47, Part B, 2016, pp. 262-277. 
DOI:10.1016/j.micpro.2016.07.002 

37. S. Mazumdar, E. Ayguade, N. Bettin, S. Bueno J. and Ermini, A. Filgueras, D. Jimenez-Gonzalez, C. Martinez, X. 
Martorell, F. Montefoschi, D. Oro, D. Pnevmatikatos, A. Rizzo, D. Theodoropoulos, R. Giorgi, "AXIOM: A Hard-
ware-Software Platform for Cyber Physical Systems", 2016 Euromicro Conf. on Digital System Design (DSD), Aug 
2016, pp. 539-546. DOI:10.1109/DSD.2016.80 

38. G. Llort, A. Filgueras, D. Jiménez-González, H. Servat, X. Teruel, E. Mercadal and J. Labarta. “The Secrets of the 
Accelerators Unveiled: Tracing Heterogeneous Executions Through OMPT”. In International Workshop on OpenMP 
(pp. 217-236). Springer, Cham. DOI: 10.1007/978-3-319-45550-1_16 

39. R. Giorgi, N. Bettin, P. Gai, X. Martorell, A. Rizzo, "AXIOM: A Flexible Platform for the Smart Home", Springer 
Int.l Publishing, Cham, 2016, pp. 57-74. DOI:10.1007/978-3-319-42304-3_3 

40. R. Giorgi, S. Mazumdar, S. Viola, P. Gai, S. Garzarella, B. Morelli, D. Pnevmatikatos, D. Theodoropoulos, C. Alva-
rez, E. Ayguade, J. Bueno, A. Filgueras, D. Jimenez-Gonzalez, X. Martorell, "Modeling Multi-Board Communication 
in the AXIOM Cyber-Physical System", Ada User Journal, vol. 37, no. 4, December 2016, pp. 228-235. ISSN: 1381-
6551 

41. M. Wagner, G. Llort, A. Filgueras, D. Jiménez-González, H. Servat, X. Teruel, and E. Ayguadé. “Monitoring Hetero-
geneous Applications with the OpenMP Tools Interface”. In Tools for High Performance Computing 2016 (pp. 41-57). 
Springer. DOI: 10.1007/978-3-319-56702-0_3 

42. D. Theodoropoulos, S. Mazumdar, E. Ayguade, N. Bettin, J. Bueno, S. Ermini, A. Filgueras, D. Jimenez-Gonzalez, C. 
Alvarez Martinez, X. Martorell, F. Montefoschi, D. Oro, D. Pnevmatikatos, A. Rizzo, P. Gai, S. Garzarella, B. Morelli, 
A. Pomella, R. Giorgi, "The AXIOM platform for next-generation cyber physical systems", Microprocessors and Mi-
crosystems, 2017. DOI:10.1016/j.micpro.2017.05.018 

43. A. Rizzo, F. Montefoschi, M. Caporali, A. Gisondi, G. Burresi, R. Giorgi, "Rapid Prototyping IoT Solutions Based on 
Machine Learning", Proc. European Conf. on Cognitive Ergonomics 2017, New York, NY, USA, 2017, pp. 4. 
DOI:10.1145/3121283.3121291 

44. D. Theodoropoulos, D. Pnevmatikatos, S. Garzarella, P. Gai, A. Rizzo, R. Giorgi. “AXIOM: enabling parallel pro-
cessing in cyber-physical systems.” Reconfigurable Computing Workshop, Lausanne, CH. Sep 2016. Pp.1-2. 

45. J. Bosch Pons, “Asynchronous runtime for task-based dataflow programming models.” Jul. 2017. Master's Thesis. 
Universitat Politecnica de Catalunya. 

46. S. Mazumdar and R. Giorgi. "A Survey on Hardware and Software Support for Thread Level Parallelism." arXiv 
preprint arXiv:1603.09274 (2016). 

47. C. Scordino and B. Morelli. “Sharing memory in modern distributed applications”. In Proceedings of the 31st Annual 
ACM Symposium on Applied Computing (pp. 1918-1921) ACM, April 2016.  


