
Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 1 of 38

H2020 FRAMEWORK PROGRAMME
ICT-01-2014: Smart Cyber-Physical Systems

PROJECT NUMBER: 645496

Agile, eXtensible, fast I/O Module for the cyber-physical era

D7.1 – Initial AXIOM Evaluation Platform (AEP) definition and initial tests

Due date of deliverable: 31
st

 January 2016

Actual Submission: 9
th

 February 2016

Start date of the project: 1
st
 February 2015 Duration: 36 months

Lead contractor for the deliverable: UNISI

Revision: See file name in document footer.

Project co-founded by the European Commission
within the HORIZON FRAMEWORK PROGRAMME (2020)

Dissemination Level: PU

PU Public

PP Restricted to other programs participant (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Change Control
Version# Date Author Organization Change History
0.1 31.01.2016 Roberto Giorgi UNISI v0.1
0.2 04.02.2016 Paolo Gai, Bruno

Morelli, Stefano
Garzarella

EVI Minor typos

Release Approval
Name Role Date
Roberto Giorgi WP Leader 08.02.2015
Roberto Giorgi Project Coordinator for formal deliverable 09.02.2015

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 2 of 38

The following list of authors will be updated to reflect the list of contributors to the document.

Roberto Giorgi
Department of Information Engineering and Mathematics

University of Siena, Italy – (UNISI)

© 2015-2018 AXIOM Consortium All Rights Reserved
Document marked as PU (Public) is published in Italy, for the AXIOM Consortium, on the www.AXIOM-project.eu web site

and can be distributed to the Public.
All other trademarks and copyrights are the property of their respective owners. The list of author does not imply any claim

of ownership on the Intellectual Properties described in this document.

The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for

errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the

use of the information contained in this document.
This document is furnished under the terms of the AXIOM License Agreement (the "License") and may only be used or

copied in accordance with the terms of the License. The information in this document is a work in progress, jointly

developed by the members of AXIOM Consortium ("AXIOM") and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets

owned by or licensed to AXIOM Partners. The partners reserve all rights with respect to such technology and related

materials. Any use of the protected technology and related material beyond the terms of the License without the prior

written consent of AXIOM is prohibited. This document contains material that is confidential to AXIOM and its members

and licensors. Until publication, the user should assume that all materials contained and/or referenced in this document

are confidential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example,

references to publicly available forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited

without the prior written consent of AXIOM or such other party that may grant permission to use its proprietary material.

The trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of

AXIOM, its members and its licensors. The copyright and trademarks owned by AXIOM, whether registered or

unregistered, may not be used in connection with any product or service that is not owned, approved or distributed by

AXIOM, and may not be used in any manner that is likely to cause customer confusion or that disparages AXIOM. Nothing

contained in this document should be construed as granting by implication, estoppel, or otherwise, any license or right to

use any copyright without the express written consent of AXIOM, its licensors or a third party owner of any such

trademark.
Printed in Siena, Italy, Europe.
Part number: Please refer to the File name in the document footer.

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE AXIOM SPECIFICATION IS PROVIDED BY AXIOM TO MEMBERS "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.

AXIOM SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE

WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS,

DATA OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE SPECIFICATION, WHETHER

IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 3 of 38

TABLE OF CONTENTS –

GLOSSARY.. 5

Executive summary .. 6

1 Introduction .. 7

1.1 Document structure ... 7

1.2 Relation to other deliverables .. 7

1.3 Tasks involved in this deliverable .. 7

2 The AXIOM platform... 8

3 The AXIOM Evaluation Platform (AEP) Setup ... 10

4 A brief review of the State-of-the-Art in the Simulation and Design Space

Exploration Technologies .. 12

4.1 A COTSon overview .. 13

5 A driving example: adopting a new execution model based on Dataflow

Threads (X-Threads) .. 14

5.1 Description of the Thread Management problem ... 14

5.1.1 Installation and more examples ... 16

6 The Design Space Exploration Tools .. 17

6.1 MYINSTALL – repeatable and easy tool installation ... 18

6.2 MYDSE – design space exploration tool .. 19

6.3 ESTRAI/RISGRAPH ... 22

7 Initial experiments enabled by the AXIOM Evaluation Platform 24

7.1 Matrix Multiplication Benchmark ... 24

7.2 Initial Experiments through the AXIOM Evaluation Platform 25

8 Confirmation of DoA objectives and Conclusions .. 29

References ... 30

APPENDIX A -- XSMLL API draft 0.3 .. 32

APPENDIX B -- XSMLL coding example .. 35

Sample code for fibx.c using the XSMLL API ... 35

Sample code for mmx.c using the XSMLL API ... 36

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 4 of 38

TABLE OF FIGURES –
FIGURE 1: AXIOM SCALABLE ARCHITECTURE. AN INSTANCE CONSISTING OF FOUR BOARDS, EACH ONE BASED ON THE SAME SYSTEM-ON-CHIP

(SOC). GPU IS AN OPTIONAL COMPONENT (MC=MEMORY CONTROLLER. PL=PROGRAMMABLE LOGIC. XSM=EXTENDED SHARED

MEMORY). ... 8
FIGURE 2: MAIN COMPONENTS OF THE COTSON SIMULATOR. ... 13
FIGURE 3: THE X-THREADS DISTRIBUTION. NANOS++ GENERATES COARSER GRAINED THREADS THAT COULD BE FURTHER DISTRIBUTED AS X-

THREADS ACROSS SEVERAL NODES. ... 14
FIGURE 4: RELATION BETWEEN FRAMES (FM) AND AN X-THREAD. AN X-THREAD READS ITS LOCAL DATA FROM AN INPUT FRAME AND MAY

PRODUCE LOCAL OUTPUTS FOR OTHER CONSUMER THREADS BY WRITING IN A NUMBER OF OUTPUT FRAMES. ... 15
FIGURE 5: THE SEVERAL PHASES OF THE MYINSTALL TOOL. THIS INCLUDES, E.G., PATCHES, REGRESSION TEST. THIS INSTALLATION TOOK

631 SECONDS AS CAN BE SEEN FROM THE LAST LINES AND IT WAS COMPLETELY SUCCESSFUL (“GOODBYE” STRING).............................. 18
FIGURE 6: COTSON AND MYDSE TOOL FLOW. COTSON NEEDS AND PRODUCES SEVERAL INPUT AND OUTPUT FILE FOR MANY EXPERIMENTS:

THIS IS WRAPPED AND PROPERLY MANAGED BY THE MYDSE TOOL. ... 19
FIGURE 7: INFOFILE FOR A DSE EXPERIMENT. IN THIS CASE WE ARE SPECIFYING A XSMLL EXECUTION MODEL, A BENCHMARK ‘MMX’, 10

DIFFERENT INPUTS (EACH ONE IS A TRIPLET OF VALUES), 1 CORE PER NODE, THREE NODE CONFIGURATIONS (1, 2 4 NODES) AND 5

DIFFERENT CACHES SIZE TOGETHER WITH OTHER SIMULATION PARAMETERS. .. 20
FIGURE 8: A SET OF INPUT AND OUTPUT FILES RELATED TO A SINGLE DSE POINT. ALL FILES ARE PROPERLY RENAMED SO THAT THEY CAN BE

ASSOCIATED TO THE SAME EXPERIMENT WHICH IS PERFORMED BY A GIVEN USER (GIORGI) ON A GIVEN MACHINE (TFX2) WITH A

SPECIFIC SIMULATOR REVISION *726) AT A GIVEN DATE_TIME (150906 10:07). THE SUFFIX OF THE FILE IDENTIFIES ITS ROLE. 20
FIGURE 9: THE “CONTROL INTERFACE” OF MYDSE. THE BLUE STRING IDENTIFIED THE DSE POINT. THIS IS A SUCCESSFUL SIMULATION

POINT SINCE A “GREEN” OK STRING HAS BEEN PRINTED MEANING THAT THE OUTPUT OF THE BENCHMARK HAS BEEN SUCCESSFULLY

COMPARED WITH THE REFERENCE OUTPUT. SOME OUTPUT STATISTICS ARE PRINTED ON THE SCREEN TO GIVE PRELIMINARY

INFORMATION. ... 21
FIGURE 10: THE OUTPUT OF A FAILED DSE POINT. A SIMULATION MAY FILE FOR A NUMBER OF REASONS. A SIMULATION MAY CRASH OR

REMAIN STUCK. IF ONE CRITICAL SITUATION IS DETECTED THE DSE POINT IS AUTOMATICALLY RESCHEDULED FOR ANOTHER ATTEMPT

WITHER ON A DIFFERENT MACHINE OR AT A LATER MOMENT. SEVERAL PROCESSES HAVE TO BE TRACKED (E.G., MEDIATOR, SIMNOW,

VNC COTSON) AND KILLED CONSEQUENTLY OR THE SIMULATION HOST MAY FINISH ITS RESOURCES. THE USER CAN ALSO CANCEL A

SINGLE SIMULATION BY PRESSING CTRL-C TWICE OR KILL THE WHOLE EXPERIMENT BY A TRIPLE CTRL-C. ... 21
FIGURE 11: THE OUTPUT OF A SERIES OF MULTIPLE EXPERIMENTS BASED ON THE SAME INFOFILE (EACH EXPERIMENT TYPICALLY CONSISTS

OF SEVERAL SIMULATION POINTS). THE AVERAGE AMONG SEVERAL EXPERIMENTS IS ALSO CALCULATED (MU). IN THE FIGURE WE

SELECTED TO REPRESENT AS OUTPUT DATA THE L2-MISS RATE (L2MR) WHEN WE VARY THE NUMBER OF NODES AND THE CACHE

SIZE. IN YELLOW WE SEE THE NUMBERS WITH A SMALL VARIANCE, IN ORANGE THOSE ONE WITH A LARGER VARIANCE AND IN RED THOSE

NUMBERS WITH A HIGH VARIANCE ACROSS THE SEVERAL EXPERIMENTS. .. 22
FIGURE 12: THE COEFFICIENT OF VARIATION (SI) OF THE L2 MISS RATE (L2MR) ACROSS SEVERAL EXPERIMENTS. 23
FIGURE 13: THE NUMBER OF REPETITIONS (NR) OF THE SIMULATIONS RELATED TO A SPECIFIC NUMBER IN THIS L2 MISS RATE (L2MR)

TABLE. ... 23
FIGURE 14: THE OUTPUT TABLE CAN BE PRE-FORMATTED SO THAT IT CAN ALSO BE AUTOMATICALLY PROCESSED BY A NEXT DSE

VISUALIZATION TOOL (RISGRAPH). THE INFORMATION FOR APPROPRIATE PLOTTING CAN BE SPECIFIED IN THE INFOFILE

ASSOCIATED TO THE EXPERIMENT. THE GRAPHICAL OUTPUT IS SIMILAR TO THE ONE IN FIGURE 20. .. 23
FIGURE 15: THE REASONS OF A LARGE VARIANCE IN THE EXPERIMENT CAN BE INVESTIGATED BY PRINTING ALL THE NUMBERS THAT ARE USED

TO CALCULATE THE AVERAGE AND VARIANCE. THE IDENTIFIERS OF THE SPECIFIC SIMULATION ARE ALSO PRINTED (NOT SHOWN IN THIS

FIGURE) SO THAT THE USER CAN INVESTIGATE THE INPUT/OUTPUT FILE TO DISCOVER THE REASONS OF A LARGE DEVIATION. 23
FIGURE 16: STRONG SCALING FOR BENCHMARK “DENSE MATRIX MULTIPLICATION” (SQUARE MATRICES). MATRIX SIZE VARIES:

200,250,320,400. BLOCK SIZE IS CONSTANT AND EQUAL TO 10. THE TIME USED FOR CALCULATING THE SPEEDUP ACCOUNTS ONLY

FOR THE USER TIME (WITHOUT KERNEL TIME). .. 26
FIGURE 17: STRONG SCALING FOR BENCHMARK “DENSE MATRIX MULTIPLICATION” (SQUARE MATRICES). MATRIX SIZE VARIES:

200,250,320,400. BLOCK SIZE IS CONSTANT AND EQUAL TO 10. THE TIME USED FOR CALCULATING THE SPEEDUP ACCOUNTS FOR

BOTH THE USER TIME AND THE KERNEL TIME. .. 26
FIGURE 18: WEAK SCALING FOR BENCHMARK “DENSE MATRIX MULTIPLICATION” (SQUARE MATRICES). MATRIX SIZE VARIES: 200, 250,

320 AND 400 ON EACH SINGLE SOC (TO KEEP THE WORK ALMOST CONSTANT ON EACH CORE/SOC). BLOCK SIZE IS CONSTANT AND

EQUAL TO 10. THE TIME USED FOR CALCULATING THE SPEEDUP ONLY ACCOUNTS USER TIME (WITHOUT KERNEL TIME). 27
FIGURE 19: EFFECT OF THE THREAD GRANULARITY (THROUGH THE BLOCK SIZE) ON STRONG SCALING FOR BENCHMARK “DENSE MATRIX

MULTIPLICATION” (SQUARE MATRICES). MATRIX SIZE VARIES: 200,250,320,400. BLOCK SIZE ASSUMES VALUES 10 AND 25. THE

TIME USED FOR CALCULATING THE SPEEDUP ACCOUNTS ONLY FOR THE USER TIME (WITHOUT KERNEL TIME). 28
FIGURE 20: EXECUTION TIME DEPENDENCY ON L2-CACHE MISS RATE IN CASE OF 1, 2, 4 NODES. .. 28

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 5 of 38

GLOSSARY

ACP – Accelerated Coherency Port: an ARM AXI bus for (one-way) coherent operations
AEP – AXIOM Evaluation Platform
AXI – a proprietary protocol for buses introduced by ARM Ltd
AXIOM-acc – an FPGA accelerated system that performs a given function
AXIOM-arch – the architecture of an AXIOM (module or) board
AXIOM-core – the cores where the computations run in an AXIOM board
AXIOM-fpga – the programmable logic part in an AXIOM board
AXIOM-link – the interconnects that permits board-to-board communication in AXIOM
Bitstream – the binary code used for configuring the PL
BRAM – Block-RAM: a fast RAM that is available in the FPGA slices (in smaller blocks)
BSD -- BroadSword Document – In this context, a file that contains the SimNow machine description
for a given Virtual Machine
CUDA – NVIDIA programming model for GPUs
Conduit – A software stub that connects GASNet to a given network protocol or programming model
Device – in this context: it is the physical system that runs a ‘device-tagged’ part of the code
DoA – Description of Action (acronym set by the European Commission)
DTS -- Distributed Thread Scheduler
DMA – Direct Memory Access: a separate master that can take over local memory transfers
DSE – Design Space Exploration
DSM – Distributed Shared Memory
eMMC – Embedded Multi Media Card
FPGA – Field Programmable Gate Array
FPGA-device – a specific accelerator that is implemented on the FPGA
GASNet – Global Address Space over Network: is a language-independent, low-level networking

layer that provides network independent communication primitives
Infiniband – a high-performance (costly) NI
IP – Intellectual Property system (either hardware or software)
Mercurium – the OmpSs compiler
Nanos++ -- the OmpSs runtime
MGT – Multi-Gigabit Transceiver
MPI – Message Passing Interface: library for writing portable message-passing programs
PL – Programmable Logic: the purely FPGA part of a SoC like ZYNQ
PS – Processing System: the hardwired IPs of a FPGA-hybrid SoC like ZYNQ
MPSoC – Multi-Processor SoC
NI – Network Interface
OpenCL – Khronos group programming model for heterogeneous architectures
OmpSs – Extension of OpenMP programming model to support task dataflow programming
OmpSs@FPGA – FPGA extension of OmpSs
OmpSs@Cluster – Cluster extension of OmpSs
PCIe – PCI Express – standard for peripherals interconnection
PHY – the physical implementation of the network interface
QSPI – Quad Serial Peripheral Interface
RDMA – Remote DMA: a DMA that can work from one computer to another computer
ROI – Region of Interest
SoC – System on Chip
USB OTG – Universal Serial Bus On The Go
XSMLL – (pronounced “X-SMALL”) eXtended Shared-Memory Low-Level API
X-Thread – a self-contained thread that can be distributed across boards through XSMLL
ZYNQ -- A System-on-Chip commercialized by XILINX, which includes FPGA and CPUs

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 6 of 38

Executive summary
The main goals of the AXIOM-WP7 are:

• Definition of the AXIOM evaluation platform (AEP) appropriate for Cyber-Physical Systems

• Definition and development of appropriate Design Space Exploration (DSE) tools and meth-
odologies;

• Integrate in the evaluation platform the main results from all the all work packages

During the first year of the AXIOM project, we developed the initial AEP and the DSE tools, while
enabling all the partners to perform their experiments in a scientifically rigorous and repeatable way
by using those common tools.

The AEP encompasses several tools, namely:

• The HP-Labs COTSon simulator, which is a powerful virtual platform that permits to run off-
the-shelf operating systems like Linux and totally decouples the functional modeling and the
timing (architectural) modeling; we are in particular interested to develop the timing models
for novel AXIOM components and decide the appropriate partitioning of functionalities be-
tween software and hardware; the XSMLL API specification and deployment shows here
such capabilities;

• The DSE tools, that are the necessary glue to properly manage the experiments, parallelize
them, collect and visualize the results;

• The prototyping and development boards from FPGA vendor; our choice is to use boards Xil-
inx in this project although our platform is in principle portable to other vendor boards.

This document briefly illustrates the context of the AEP tools, describes the capabilities of such tools
and shows some initial results that we were able to produce while advancing beyond the state-of-the
art. In particular, we show how it is possible to distribute the work in the form of special threads that
we call X-Threads across several cores and several boards.

An X-thread follows a novel memory consistency model based on dataflow concepts and permits
scalability of our platform from 1 to 4 nodes (4 to 16 cores) in our initial experiments, while permit-
ting a consistent distribution of data across several boards through a low-level API that we call
XSMLL (pronounced “X-SMALL”, which stands for eXtended Shared Memory Low-Level API). In
this way we overcome some important limitations of traditional Distributed Shared Memory models.

Therefore the objectives of the first year have been met or exceeded (e.g. with the XSMLL API speci-
fication and its implementation in the AEP tools and with the visualization tools).

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 7 of 38

1 Introduction
The main goal of the AXIOM project is to build a reference board for Smart Cyber-Physical Systems.
To that end, in this Workpackage we intended to select and use the best suitable methodology and
tools in order to assess the performance and to steer the design by exploring the most promising op-
tions (Design Space Exploration or DSE).

We illustrate the AXIOM Evaluation Platform and in particular the tools: COTSon, MYINSTALL,
MYDSE, ESTRAI, RISGRAPH. The COTSon and MYDSE are by far the most complex ones. We do
not describe here the Xilinx XC-706 platform (our reference platform) for which we have a large
amount of documentation form the vendor [42].

1.1 Document structure
This document is organized as follows

• In Section 2 we briefly recall the AXIOM platform high-level architecture;

• In Section 3 we explain the motivations behind the AXIOM Evaluation Platform;

• In Section 4 we recall the state of the art and the COTSon simulator capabilities useful for this
project;

• In Section 5 we illustrate through a driving example how we can implement in the simulator
timing model based on the envisioned low-level support for thread distribution across boards

• In Section 6 we illustrate the DSE tools;

• In Section 7 we show some initial and successful experiment to distribute a single computa-
tion (matrix multiplication) across several boards (in total e boards with 4 cores each).

1.2 Relation to other deliverables
Deliverable D3.1 refers to the selection of initial kernels and benchmarks to be used for the initial
analysis (this is also detailed in this deliverable).

Deliverable D4.1 refers to the programming model (OmpSs) and other activities to build a coherent
software and hardware stack in coordination with WP4, WP5, WP6 (and this Workpackage).

Deliverable D6.1 describes the initial architecture for the first AXIOM board prototype (specified at
month 9).

1.3 Tasks involved in this deliverable
This deliverable is the result of the work developed in tasks:

• Task 7.1 (month 1 - 3): Evaluation-Platform Setup (ALL PARTNERS)
• Task 7.2 (month 4 - 30): Continuous development of performance evaluation tools and DSE

(Partners: UNISI, BSC, EVI, FORTH, SECO)
• Task 7.3 (month 4 - 30): Evaluation from kernels to benchmarks and final application code

T5.3: Parallel programming library (UNISI, BSC, EVI, FORTH)

There is also a close collaboration with the following task (only reported here for reference):

• Task 5.1 Operating System (month 1-18)
• Task 5.2 (month 1 -18): Remote memory access

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 8 of 38

2 The AXIOM platform
We briefly recall here how the AXIOM platform is architected. The architecture is based on the fol-
lowing pillars (see also Figure 1 and Deliverable D6.1):

P1 FPGA, i.e. large Programmable Logic for acceleration of functions, soft-IPs, implementing
specific AXIOM support for interconnects and scaling,

P2 General Purpose Cores, to support the OS and for running parts that make little sense on the
other accelerators,

P3 High-Speed, Inexpensive Interconnects to permit scalability and deverticalise the technology,
e.g., for toolchains,

P4 Open-Source Software Stack,

P5 Lower-Speed Interface for the Cyber-Physical world, such as Arduino [22] connectors, USB,
Ethernet, WiFi.

Core1

CoreN

(GPU)

I/O

hub

PL

HIGH SPEED

TRANCEIVERS
MC

XSM

MEM
…

…

SoC1

Core1

CoreN

(GPU)

I/O

hub

PL

HIGH SPEED

TRANCEIVERS
MC

XSM

MEM
…

…

SoC2

Core1

CoreN

(GPU)

I/O

hub

PL

HIGH SPEED

TRANCEIVERS
MC

XSM

MEM
…

…

SoC3

Core1

CoreN

(GPU)

I/O

hub

PL

HIGH SPEED

TRANCEIVERS
MC

XSM

MEM
…

…

SoC4

Figure 1: AXIOM Scalable Architecture. An instance consisting of four boards, each one based on the same System-
on-Chip (SoC). GPU is an optional component (MC=Memory Controller. PL=Programmable Logic. XSM=eXtended

Shared Memory).

Below we illustrate those pillars more in more detail.

[P1] In the first phase we will adopt one of the existing solutions such as the Xilinx Zynq [21], (Zynq
is a chip-family, the chip can include a dual ARM Cortex-A9@1GHz, 4@6.25Gbps to 16@12.5Gbps
transceivers, low-power programmable logic from 28k to 444k logic cells + 240 to 3020 KB BRAM +
80 to 2020 18x25 DSP slices, PCI express, DDR3 memory controller, 2 USB, 2 GbE, 2 CAN, 2SDIO,
2 UART, 2 SPI, 2 I2C, 4x32b GPIO, security features, 2 ADC@12bit 1Msps). The central hearth of
the board is the FPGA SoC, so that it can make possible to integrate all the features, to provide cus-
tomized and reconfigurable acceleration of the specific scenario where the board is deployed and to
provide the substrate for board-to-board communication. In our roadmap, we are also considering oth-
er options that may be available soon such as the Xilinx Ultrascale+ [23] [43].

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 9 of 38

[P2] The general purpose cores are used for supporting a number of activities such as the Operating
System (or a system task) but also whenever there is a sequential task which needs for more Instruc-
tion Level Parallelism rather than other forms of acceleration.

[P3] To keep the cost low we are initially oriented to use the FPGA transceivers and use standard and
inexpensive (multiple) connectors such as the SATA connectors (without necessarily use the SATA
protocol). Similar solutions had been adopted in the FORMIC board [24].

[P4] The recent success of SBCs such as the UDOO [25] and RaspberryPi further demonstrated the
need for using open-source software. Linux has already become a reference example of how open-
source software can widen the benefits at any level. While there is not yet a final consensus on which
parallel programming model is best, we believe that adopting OmpSs [2] can easy the programmabil-
ity by providing techniques familiar to the HPC programmer into the Embedded Computing commu-
nity.

[P5] In order to interface with the physical world the platform includes support for Arduino connect-
ors for General Purpose I/O and other standard interfaces such as the USB, Ethernet and WiFi. Not
less important is the capability of interfacing with sensors and actuators or any other type of external
shields as in the Arduino platform.

Moreover, X-Threads (see Section 5) make possible to bring together in a single platform all those el-
ements and tackling cross-issues such as a better real-time scheduling: as the inputs should be availa-
ble before execution of the X-Threads, the system can be more predictable too.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 10 of 38

3 The AXIOM Evaluation Platform (AEP) Setup
During the first three months (Task T7.1) of this project, we had a main task of deciding the best
choice at that moment in time for a promising and achievable platform for the AXIOM system and
consequently to setup an appropriate DSE methodology. Essentially the AEP is made of the combina-
tion of two important tools: the HP-Labs COTSon simulator and the Xilinx Zynq based platforms as
explained below.

In the proposal phase we tentatively indicated the Xilinx XC702 development board, which is based
on the Zynq-7000 platform. After considering the possible options at that moment, including interest-
ing products from, e.g. Altera Arria-V SoC, we preferred the Xilinx for the following main reasons:

• More mature product
• Existing collaborations, e.g., between BSC and Xilinx
• More promising roadmap including 64-bit products like the Ultrascale+ (not yet available at

the time of deciding the FPGA prototyping platform but later on in October 2015 first sam-
pled successfully and under initial distribution at the time of writing January 2016). The Ul-
trascale+ has been inserted in the AXIOM roadmap for WP6 (cf. D6.1).

The commonly agreed choice was then the Xilinx-XC706 development board. Each of the partners
then acquired one or two of those boards (two for those partners directly involved in the experimenta-
tion of the multi-board framework and one board in the case of those partners mostly interested in the
application setup).

The second fundamental choice was about the simulation platform. Given the research nature of the
goals of this project we also needed a more flexible platform for the Design Space Exploration (DSE)
in order to better understand e.g. whether some bottlenecks are due to, e.g., the congestion on a bus or
to insufficient cache size and this is less flexible or impossible to be seen on the FPGA prototyping
platform.

Partner UNISI had a considerable experience (5+years developed during the TERAFLUX project [15]
[16] and ERA project [44] [46] [47]) on the HP-Labs COTSon [9][10], therefore partner UNISI im-
mediately provided access to all partners to such platform indicating a road for fast prototyping of our
platform: in fact (as explored in the Task T5.2), as of May 2015 we enabled the possibility to run a
computations on multiple nodes by specifying a low-level API (called XSMLL [7]) that enables the
distribution of threads (called X-Threads) across not only the (AXIOM-)cores on the same board but
also across the AXIOM-cores on multiple AXIOM-boards [5]. Also: COTSon include an interface to
the HP McPAT tool [20] for estimating the consumed power.

Therefore the second fundamental choice was to rely both on the FPGA and the COTSon simulator.
The proposed methodology requires first exploring and modeling parts on the simulator and then,
once the DSE is completed, implementing them on the FPGA based prototypes. This has also the con-
siderable advantage of allowing immediately to develop the software stack early (WP3-WP4-WP5)
and therefore face more early in the project the possible challenges.

It has to be noted that at the current time COTSon relies for its functional execution on the AMD
SimNow virtualizer: this has the advantage of providing a realistic platform that is the same internal
tool used by AMD for developing their processors and platform. A special interface is available in
COTSon to communicate the internal state of the SimNow so that the two tools can seamlessly coop-

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 11 of 38

erate. One objection, which is typically raised at first sight, is that the current SimNow relies on x86
architecture rather than the ARM architecture. However it has to be noted that:

i) previous studies discovered that the performance and power studies of ARM and x86 do not
depend on the specific ISA that is used [17] but rather they depend on the type and quantity of
resources that are included in each platform (i.e., bus-widths, cache size, cache organization,
instruction window size and similar): “We find that ARM and x86 processors are simply engi-
neering design points optimized for different levels of performance, and there is nothing fun-
damentally more energy efficient in one ISA class or the other. The ISA being RISC or CISC
seems irrelevant”. Therefore we postponed the detailed analysis of the specific feature details
provided by each platform to a later step since the most relevant DSE parameters and choices
are conditioned by other aspects which are portable throughout the ISAs such as the availability
of certain software components or library such as GASNet [1], MPI [4], OmpSs [2][3];

ii) AMD is developing chips (e.g., the K12 [20] and A1100 [19]) that also rely in ARM and in the
foreseeable future there could be extensions of the SimNow to support also that architecture.

As of Milestone 7.1 (in synchronization with the end of task T7.1), we therefore commonly agreed on
the following technical aspects in order to simplify and steer the subsequent research steps and proto-
typing:

1) The Operating System of the target system (AXIOM-board) will be Linux based on the distri-
bution Ubuntu 14.04LTS. This should guarantee reasonable stability and support from the part
vendors as well as good support for the peripherals and related drivers. Being this an “LTS”
(Long Term Support) distribution means that software updates will be guaranteed until year
14+5= (20)19 so that the AXIOM-board could safely rely on that. A switch to a more recent
version could be considered but evaluated carefully at later stages in this project.

2) For simplicity also the supported host systems should use the Ubuntu 14.04LTS. This also sim-
plifies the deployment of applications and tools usage and understanding.

3) We will use both the HP-Labs COTSon simulator and the Xilinx ZC-706 boards as well as the
first AXIOM-board prototypes from partner SECO as soon as they are available. At any time
the use of the simulator could be helpful to debug problems by producing execution traces of
the application or to have a reference comparison.

4) Start the exploration with the following three simple benchmarks: i) matrix-multiplication; ii)
CJPEG; iii) face detection. The reason is both due to simplicity and representativeness

5) As a further step we agreed to consider part or all of the ERA benchmark suite [45], which is
well representative of the two fundamental applications that we aim to demonstrate in this pro-
ject, namely Smart-Home and Smart Video-surveillance. For a later phase in the project we will
then explore the final application prototypes.

As of aspects 1 and 2, as of month 3 (March 2015) partners UNISI and BSC provided on the common
repository pre-installed images that could both:

• Run on the SimNow simulator
• Run on a real x86 machine

This is greatly helpful to run any software or tool needed for our project in a realistic framework.

To even accelerate the start-off of the simulator, UNISI provided the so called Virtual-Machine Snap-
shots (called “BSD” in SimNow terminology) so that a given benchmark can be launched from the
shell prompt (without the boot time).

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 12 of 38

4 A brief review of the State-of-the-Art in the Simulation

and Design Space Exploration Technologies
Design Space Exploration and its automation is an important part of modern performance evaluation
and power estimation methodologies [11] [12] [13] [14] [15] [16]. Recent projects like MULTICUBE
[12] have proposed systematic approaches for DSE. However some of those approaches require con-
siderable time to be ported to other frameworks. In this case, our project is focusing on a heterogene-
ous architecture encompassing both programmable logic, i.e., FPGA and off-the-shelf cores such as
the ARM Cortex A9. Therefore we decided to adopt a multi-pronged approach that is based on both a
well-known architectural simulator (HP-Labs COTSon [9] [10]) and development boards and proto-
types based on the Xilinx Zynq SoC [21] [42].

In Table 1 we compare some state of the art simulators (adapted from [27]) which shows that one of
the main feature is the ability to separate the functional description and the architectural modeling
(called “timing model”) through the so called “functional directed” approach. There exist at least four
approaches for a (timing) simulation depending on the relationship between the “functional model”
(fm) and the “timing model” (tm) [28]:

• “functional-first” or “trace-driven”, the fm is run first and separately and the tm is run later on
in a completely decoupled fashion (all fm is run before the tm is run);

• “timing directed” or “execution driven”, the fm and tm are closely coupled (no decoupling);
• “timing-first”, the tm drives the fm, both are completely decoupled, but the function has to

checked later on and eventually undone;
• “functional-directed”, the fm drives the tm, both are completely decoupled, the function is

always the right one but we need a timing feedback from tm to correct the timing. [10].

Table 1: Comparison of main features of several timing simulators

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 13 of 38

4.1 A COTSon overview
Compared to other approaches, COTSon uses the so called “functional-directed” approach. The
COTSon simulator permitted us to immediately run the chosen platform (see previous section), i.e.,
the Ubuntu 14.04 distribution of the Linux-based operating system including the OmpSs compiler (cf.
Deliverable D4.1) and related applications.

In Figure 2 the green part represents the functional-models. This allows us to run essentially any cur-
rently available software as in a real machine. The “mediator” represents the model of a switch and
our aim is to modify it in order to model the behavior of our custom interconnects. Another instance
of the mediator can already model and Ethernet based communication, e.g., we can perform a “ping-
test” with two or more nodes virtually connected through that component as they were in an Ethernet
based LAN. The motivation for the multiple interconnects derives from the AXIOM project design
that aims to separate the traffic for building a multi-board system and the traffic for the internet-
related connection. With the COTSon mediator we can model both cases. The SimNow is the Virtual
Machine which models all details of a computer. AMD is also providing a separate SDK to model any
specific board that has to be plugged in such as a network card or a GPU.

Again in Figure 2 the blue part represents the timing models. This is what we are mostly interested to
develop during the project, i.e., the specific modules or architecture to support the easy programma-
bility in an efficient way (XSMLL and X-Threads – c.f. next section for a driving example). Moreover
this part is what can implement simulation acceleration techniques, such as dynamic sampling [29],
and the tracing, profiling, statistics collection.

Finally, again in Figure 2 the orange part represents the scripting glue that controls, e.g., the setup of
sandboxes for the parallel simulation instances of SimNow, the boot/resume/stop of each virtual ma-
chine.

C
O

T
S

o
n

 C
o

n
tro

l In
te

rfa
ce

Timing Interface

Sampling driver

Timing

Model

1,2…n

Timing

Model

1,2…n

Timing

Model

1,2…,n

Devices

Network

Functional Models,

Congestion, …

Trace Collection,

Profiling, Hooks, …

CPU,

Memory,

Interconnects

Timing-Models

Sampling,

Interleaving, …

Time Synchronization, Simulation Parallelization,

Network Instrumentation, Network Statistics, …

Mediator instance

(Inter-node Network/Switch Model)

Disk, NIC, …

Timing Simulation

SimNow instance

(Node Functional-Model)

Core

1

Core

2

Core

N…

SimNow instance

(Node Functional-Model)

Core

1

Core

2

Core

N…

SimNow instance

(Node Functional-Model)

Core

1

Core

2

Core

N…
Functional Simulation

Figure 2: Main components of the COTSon simulator.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 14 of 38

5 A driving example: adopting a new execution model
based on Dataflow Threads (X-Threads)

As a driving example to show how COTSon can model what we aim to design in the AXIOM project,
we used the XSMLL (eXtended Shared Memory Low-Level) API (see also Appendix A) to demon-
strate how we could easily partition functionalities between software and hardware.

5.1 Description of the Thread Management problem
Using a general paradigm to manage threads can lead to good performance, such as in the case of P-
threads, Cilk, OpenMP. However, these models suffer performance penalties when synchronization
and distribution of data is not managed properly [30]. By re-organizing the execution is such a way
the threads follow more closely the data flow of the program, such as with DF-Threads (in this con-
text extended as X-Threads), better scalability can be achieved [31] (Figure 3). Problem to analyze

BOARD1 BOARD2

Linux1 Linux2

APP

Nanos++

XSMLL

Figure 3: The X-Threads distribution. Nanos++ generates coarser grained threads that could be further distributed
as X-Threads across several nodes.

X-Threads are best implemented in hardware through the use of a Distributed Thread Scheduler [32]
(DTS). The DTS tries to solve the following challenges:

• at the system level, all the available resources and the healthiness of the whole system must be
considered in a distributed fashion: if a part breaks the remaining of the system should continue
to work [33];

• at low-level, the fine-grain threads coming from the adoption of the data-flow execution model
must be distributed across the computing elements (CPUs, FPGAs).

This means to understand at run-time what is the best resource assignment (scheduling/mapping on
CPU or reconfigurable HW) to a task (or thread), according to multiple goals (e.g., performance/QoS,
power consumption minimization, thermal hotspots). The policies should operate effectively both in a
single application and a mixed workload scenario. The scheduler can be further extended to enable it
distributing fine-grain threads across the different boards or MPSoCs.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 15 of 38

In order to reduce the thread management overhead, the DTS needs to be accelerated in hardware, by
mapping its structure into the FPGA. The hardware thread support is represented in Figure 1 by the
eXtended Shared Memory Low-Level (XSMLL) block. Standard high-speed and low-latency
interconnections (e.g., PCIe 3.0) may provide enough bandwidth, but the exact interconnects is under
exploration [36] (c.f. Deliverable D4.1 1 and Task 6.5).

TH4

FM

FM FM

Figure 4: Relation between Frames (FM) and an X-Thread. An X-Thread reads its local data from an input frame
and may produce local outputs for other consumer threads by writing in a number of output frames.

Definition 1 -- X-thread (new incarnation of DF-thread [30]) is a function that expects no parameters
and returns no parameters (Figure 4).

The body of this function can refer to any memory location for which it has got the pointer through
XSM function calls (e.g., xpreload , xpoststor , xsubscribe , ...). An X-thread is identified by

an object of type xtid _t (X-thread identifier). In other words:

typedef void (*xthread_t)(void)

Definition 2 -- INPUT_FRAME: A buffer which is allocated in the local memory and contains the in-
put values for the current X-thread (Figure 4).

Definition 3 -- OUTPUT_FRAME: A buffer which is allocated in the local memory and contains val-
ues to be used by other X-threads, i.e., consumer X-threads (Figure 4).

Definition 4 -- SYNCHRONIZATION_COUNT: A number which is initially set to the number of in-
put values (or events) needed by an X-thread. The SYNCHRONIZATION_COUNT has to be decre-
mented each time the expected data is written in an OUTPUT_FRAME.

XSMLL basic functions1 (see Appendix A for a more extensive description of the current implemen-
tation):

1 xtid _t is type that combines two objects: a thread identifier (a number from 1 through a
XSM_MAX_THREAD_X_OFF(tid) _ID) and an offset inside its input frame. Given an 'xtid_t tid'
the thread number is obtained by the _X_TID(tid) macro, while the frame offset is obtained by the macro.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 16 of 38

XSCHEDULE:

xtid_t xschedulez(xthread_t ip, uint32_t sc, uint32_t sz)

Schedules an X-thread whose name (instruction pointer) is specified by 'ip' .

The thread expects sc inputs which are stored in its INPUT_FRAME of size 'sz‘ (in bytes). Re-

turns an X-thread identifier (with 0 internal offset -- see above definition). 'sc' is also called the
SYNCHRONIZATION_COUNT of the X-thread (see above definition). Implicitly allocates the data
frame It only *schedules* the code The code will be activated on availability of ALL input data and
resources.

XDESTROY:

void xdestroy()

Called at the end of an X-thread to signal that any allocated resource belonging to the current X-
thread can be freed up.

The aim of the AXIOM project is also towards an energy-efficient improvement of the performance
of applications, along with benefits in terms of modular scalability of the platform. In the next
sections we will describe the first experiments that enabled us to have more confidence with this
approach.

5.1.1 Installation and more examples
XSMLL installation instructions

https://git.axiom-project.eu/?p=XSMLL;a=blob;f=README00-xsmll_install

The internal repository also provides more XSMLL examples (see Appendix B for some code sam-
ples)

fibx.c

simple recursive fibonacci program that generates lots of threads (useful for testing xschedule)

mmx.x

block-striped matrix multiplier program that uses different memory consistency on the matrices (use-
ful for testing shared memory)

test1.c

simple test of several functions communicating

test2.cc

graph construction with dynamic nodes that are added and deleted useful to show how to use pointers
with X-threads.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 17 of 38

6 The Design Space Exploration Tools
The DSE tools developed in the AXIOM project aim at providing the necessary substrate to imple-
ment a proper scientific methodology for experimentation. An important aspect is the open–access
[36] [37] and reproducibility of the experiments [38] [39] [40].

For a proper simulation methodology at least the following steps have to be followed (and have to be
therefore automatized) for carrying out the experiments:

• SET THE MACHINE: we must use the same BSD file with very small variations (ideally just
the no. of cores: e.g., 1, 2, 4)

• SET THE ALGORITHM: while comparing different programming models, compilation op-
tion, etc. we must keep the variation at the minimum (e.g., sequential vs. Cilk vs. OmpSs vs.
DSMs like Jump [41]). A common mistake is to compare something which is highly opti-
mized code vs. a substantially different method to solve the same problem (e.g. Fibonacci Re-
cursive vs. Fibonacci Iterative vs. Fibonacci Lookup)

• SET THE INPUT DATA: the input data MUST be the same across different architectural or
software parameters or we may end up in comparing a very different parallelism or, even
worse, just get not-comparable results

• PRECALCULATE YOUR EXPECTED OUTPUT AND COMPARE IF OK: the output data
should be computed separately from the running test so that we can check if the test has run
till completion or there was any error (bug, segmentation or anything else). The common mis-
take is to get an ultrafast program because it prints an error message after the first instruction.

• DEFINE THE REGION OF INTEREST (ROI) OF THE PROGRAM: any measurement
should be taken from a well-defined part of the code that avoids the initial/final print state-
ments - unless you are interested to study effects on the I/O.

• DEFINE THE METRICS YOU ARE INTERESTED IN: e.g., execution time, miss rate, pow-
er, faults ...make sure you use the right estimator for each metric; identify any source of
"noise"; eventually repeat the same test/experiment several times to filter out any "random er-
ror".

• MAKE SURE THAT YOU USE THE RIGHT PROBE/METHODOLOGY: e.g. use of "get-
timeofday" vs. "hw counters" vs. "sw probes" to measure the execution time.

• DESCRIBE IN DETAIL ALL THE TEST SETUP: similarly to SPEC (www.spec.org) we
need to prepare a sort of identification tag to each experiment and being able to check what
were the exact conditions of the tests.

• TAKE NOTE OF THE HOST METRICS TOO: we can't afford to spend months for a single
test. Therefore, we need to monitor how many resources in terms of host-wall-clock time,
host-memory, host-cores, etc. are necessary to perform a certain test.

As explained in the next section the DSE tools (MYINSTALL, MYDSE) aim at describing those de-
tails in a methodologically correct way.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 18 of 38

6.1 MYINSTALL – repeatable and easy tool installati on
The purpose of this tool is to easy the installation process of the simulator and the related hard disk.
As explained, in AXIOM we need to define the hard-disk image containing the selected OS (Ubuntu
14.04 Linux distribution in our case) with the OmpSs tools and OmpSs applications. This process can
be tedious and prone to errors. Therefore we designed a specific tool so that:

i) The basic host software simulator is installed. A specific (previous release) of the
simulator can be selected in order to perform regression tests or compare several in-
stallations.

ii) Hard-disk image and BSDs are prepared and installed so that the experimentation
phase can easily start.

iii) Regression tests are automatically performed at installation time in order to make sure
that the software is properly patched, compiled and installed.

iv) Additional plugins and temporary patches can be installed automatically.

Typically this process may now take as much as 10 to 15 minutes and is all automatic (Figure 5). Pre-
viously, it could have taken a day or so and might have repeated everytime there was some doubts on
the installation. Moreover, this can be easily repeated on a number of (parallel) simulation hosts and
by project partners or for future use by the scientific community. This tool has been proved largely
useful to improve the productivity of the experimentation and design cycle.

Figure 5: The several phases of the MYINSTALL tool. This includes, e.g., patches, regression test. This installation
took 631 seconds as can be seen from the last lines and it was completely successful (“Goodbye” string).

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 19 of 38

6.2 MYDSE – design space exploration tool
The SimNow virtualizer is a very complex tool (like a real machine) and is prone to failure or errors.
Managing the simulations in case of a large number of design points to be explored is almost unfeasi-
ble if done manually. Therefore we found necessary to define a specific tools (MYDSE) with the fol-
lowing goals:

i) Specifying a DSE experiment through a small configuration file (“INFOFILE”, see Fig-
ure 7);

ii) Distributing the simulation across an arbitrary number of simulation hosts (currently we
use a cluster of more than 20 machine at the location of partner UNISI);

iii) Managing automatically cases when a simulations fails or get stuck for a given time
threshold by killing the simulation and all related processes;

iv) Properly using the same binary across multiple hosts with different GLIBC libraries and
compilation tools binaries (depending on the library and compilation tools the simulation
results may differ due to a different benchmark binary that get pulled into the guest);

v) Collect in an ordered way the several files from a single simulation point (Figure 6) ad
from several simulation point belonging to the same experiment (Figure 8);

vi) Monitoring and controlling the simulation loop (Figure 9, Figure 10);
vii) Interpreting user formulas to extract aggregated information from several basic statistics

(e.g. calculating the miss rate starting from the read miss and write miss);
viii) Automatically trying to re-execute the simulations that eventually fail;
ix) Inserting the code for marking the ROI;
x) Parsing and updating the configuration files of a simulation starting from a given tem-

plate;
xi) Supporting different execution model such as XSMLL, the standard one or others;

Currently the MYDSE script is more than 200kB of shell scripting.

MYDSE

Tool Flow

COTSON

SIMOUT

k.TIMER.LOG

NODE

k=1..N

k.NODEOUT

SIMLUA

HOST SIDE FILES/TOOLS GUEST SIDE FILES/TOOLS

SIMCONFIG

k.NODECONFIG

k.XSMSTATS

k.SIMSCREEN

MEDOUT MEDTIMER

Figure 6: COTSON and MYDSE tool flow. COTSon needs and produces several input and output file for many ex-
periments: this is wrapped and properly managed by the MYDSE tool.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 20 of 38

Figure 7: INFOFILE for a DSE experiment. In this case we are specifying a XSMLL execution model, a benchmark
‘mmx’, 10 different inputs (each one is a triplet of values), 1 core per node, three node configurations (1, 2 4 nodes)

and 5 different caches size together with other simulation parameters.

Figure 8: A set of input and output files related to a single DSE point. All files are properly renamed so that they can
be associated to the same experiment which is performed by a given user (giorgi) on a given machine (tfx2) with a

specific simulator revision *726) at a given date_time (150906 10:07). The suffix of the file identifies its role.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 21 of 38

Figure 9: The “control interface” of MYDSE. The blue string identified the DSE point. This is a successful simulation
point since a “green” OK string has been printed meaning that the output of the benchmark has been successfully

compared with the reference output. Some output statistics are printed on the screen to give preliminary information.

Figure 10: The output of a failed DSE point. A simulation may file for a number of reasons. A simulation may crash
or remain stuck. If one critical situation is detected the DSE point is automatically rescheduled for another attempt

wither on a different machine or at a later moment. Several processes have to be tracked (e.g., mediator, simnow, vnc
cotson) and killed consequently or the simulation host may finish its resources. The user can also cancel a single simu-

lation by pressing CTRL-C twice or kill the whole experiment by a triple CTRL-C.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 22 of 38

6.3 ESTRAI/RISGRAPH
Once a campaign of experiments had been conducted, the user needs to visualize the results of the ex-
periments. The first step is to extract the data, as specified in the INFOFILE in a tabular format
(Figure 11). The data can then be easily imported in a spreadsheet for further analysis.

The ESTRAI tool permits to extract such tables representing the average (calculated for each point of
the table) across all the experiment performed or only on a certain subset of them (e.g., located by the
date of the experiment). The ESTRAI tool permits also to analyze the Coefficient of Variation (COV)
calculate as the ratio between the standard deviation s and the mean �:

COV=
�
� where � = �∑ (
��)
�
��

��� and � = �
� ∑ ������

On the other side, if the set of data to be represented is already well known another tool called RIS-
GRAPH transforms the table automatically in a graph that can be more easily interpreted (Figure 14).

Figure 11: The output of a series of multiple experiments based on the same INFOFILE (each experiment typically
consists of several simulation points). The average among several experiments is also calculated (MU). In the figure
we selected to represent as output data the L2-Miss Rate (L2MR) when we vary the number of nodes and the cache
size. In yellow we see the numbers with a small variance, in orange those one with a larger variance and in red those

numbers with a high variance across the several experiments.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 23 of 38

Figure 12: The Coefficient of Variation (SI) of the L2 Miss Rate (L2MR) across several experiments.

Figure 13: The number of repetitions (NR) of the simulations related to a specific number in this L2 Miss Rate
(L2MR) table.

Figure 14: The output table can be pre-formatted so that it can also be automatically processed by a next DSE visual-
ization tool (RISGRAPH). The information for appropr iate plotting can be specified in the INFOFILE associated to

the experiment. The graphical output is similar to the one in Figure 20.

Figure 15: The reasons of a large variance in the experiment can be investigated by printing all the numbers that are
used to calculate the average and variance. The identifiers of the specific simulation are also printed (not shown in

this figure) so that the user can investigate the input/output file to discover the reasons of a large deviation.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 24 of 38

7 Initial experiments enabled by the AXIOM Evaluation

Platform
In this Section we illustrate the main results already appearing in a recent publication [36]. In order to
flexibly fit the need of designing both the hardware and the software of the AXIOM system, we used
the COTSon simulator [9] [10]. COTSon can model the main AXIOM components of Figure 1.
Among the important features, COTSon performs full-system simulation: the designer can run, e.g.,
an off-the-shelf Linux distribution and model in a decoupled way the desired functionalities and their
timing behavior. This models a more realistic situation where the OS is interacting with the user pro-
grams and includes also any interrupts, exceptions, virtual memory management. In particular, the key
parameters of the modeled cores are described in Table 2.

Table 2 Multicore architectural parameters.

Additionally, the simulator has been extended to support X-Threads [31]. This means that the simula-
tor is also modeling the Distributed Thread Scheduler [32], which is implemented on the Programma-
ble Logic through the block XSM (eXtended Shared Memory) of Figure 1.

As for the interconnections among SoCs, we are currently exploring several options as offered by the
latest technologies. In the COTSon simulator we are performing limit-study experiments assuming
that we can achieve enough bandwidth and low latency at a reasonable cost. This part is explored in
detail within Deliverable D4.1 (and further explored in the next period activities).

7.1 Matrix Multiplication Benchmark
To illustrate the capabilities of the DSE platform, we selected the Matrix Multiplication kernel to test
the performance evaluation infrastructure and to verify the feasibility of supporting X-Threads on the
AXIOM platform.

The Matrix Multiplication benchmark has the following characteristics:

• Blocked matrix multiplication using the classical 3 nested loops algorithm.
• Square matrices of size n×n, where n=200,250,320,400,500,640,800.
• Block size b=10 and b=25.

Since, in this case, the number of operations is O(n3), the size n of the matrix has been chosen in such
a way that the cubed size of each number of the size sequence is approximately the double of the
cubed size of the previous number, i.e., 2503≈2×2003 and so on. This is useful to perform the weak
scaling tests (Figure 18).

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 25 of 38

The X-Threads are generated in such a way that each thread performs the matrix multiplication of
each block, therefore we can expect a number of threads equal to n/b.

7.2 Initial Experiments through the AXIOM Evaluatio n Platform
In order to verify the feasibility of running programs not only on the single board but also on multiple
boards thanks to the adopted programming model (OmpSs [7]) and the underlying runtime system a
key point is being able to schedule and execute the generated X-Threads across the boards. This im-
plies that the memory which is local to each node (see Figure 1) has to be managed in such a way that
it appears as shared to the rest of the SoCs/boards.

The XSM block of Figure 1 serves to that goal by bookkeeping the X-Threads and by appropriately
moving the data where is needed.

We performed two classical tests to verify that the proposed paradigm can permit the distribution of
the threads:

• Strong Scaling tests,

• Weak Scaling tests.

With the strong scaling tests, we increase the number of SoCs (for simplicity we refer to the single
SoC as if it were a board) and we want to verify if the speedup t1/tN (being t1 the time to execute the
program on a single SoC and tN the time to execute the program on N SoCs) is close to the ideally
linear speedup (Figure 16, Figure 17, Figure 19).

With the weak scaling tests, we increase both the number of SoCs and the quantity of work to be exe-
cuted, in the same proportion.

The number of operations varies as O(n3) where n is the size of the square matrix. Therefore, we have

to increase the size of the matrix by a factor √2� , as we increase the number of SoCs in order to per-
form the weak scaling tests (Figure 4). In the latter case, the ideal curve is a horizontal line with value
1, which (ideally) means that as we increase the quantity of work and the SoCs (in the same propor-
tion) the time tN equals the time t1, i.e., the scaled systems keeps up with the increased volume of da-
ta.

As we can see in Figure 16, as the number of SoCs is increased from 1 to 2 and then 4, the scalability
is good enough (close to ideal), especially for higher matrix sizes (e.g., 320). In fact, for higher matrix
sizes, the number of available X-threads is also higher.

The deviation from ideal behavior is mainly due to:

• Too few X-Threads from the program;

• Increased data movement.

In fact, as the number of X-Threads is equal to n/b, in the case of n=200 we only have 5 threads to be
assigned to the each of the SoCs; moreover, since our SoC has 4 cores, some of the cores may remain
idle. This is visible in Figure 16 for the curve for n=200 and 4 SoCs with a drop in the scalability. We
reported the strong scaling curves for some other values (200, 250, 320 and 400) to verify the sensitiv-
ity to the input data; in the tests of Figure 16 the block size is kept constant.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 26 of 38

Speedup (t1/tN)

No. of SoCs

(4) (8) (16) (No. of Cores)

1

2

4

1 2 4

size=320

size=400

size=250

size=200

User only

Figure 16: Strong Scaling for benchmark “Dense Matrix Multiplication” (Square Matrices). Matrix size v aries:
200,250,320,400. Block size is constant and equal to 10. The time used for calculating the speedup accounts only for
the User Time (without Kernel Time).

One other aspect regards the influence of the Operating System. The curves in Figure 16 reflect the
execution of only the User part of the program. We extracted also the strong scaling curves that reflect
both the User and the Kernel instructions (Figure 17).

As we can see, the strong scaling is affected by the OS: all the curves of Figure 16 are now com-
pressed towards the bottom part of the Figure 17, as the time spent in Kernel mode ranges from 6% to
60% in those tests. This indicates a strong need for using a full-system simulator and not neglecting
the OS activities for a proper platform design.

No. of SoCs

(4) (8) (16) (No. of Cores)

1

2

4

1 2 4

size=400

size=320

size=250

size=200

Speedup (t1/tN)

User+Kernel

Figure 17: Strong Scaling for benchmark “Dense Matrix Multiplication” (Square Matrices). Matrix size v aries:
200,250,320,400. Block size is constant and equal to 10. The time used for calculating the speedup accounts for both

the User Time and the Kernel Time.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 27 of 38

In the weak scaling tests of Figure 18, we observe that for some matrix size (n=400) we have a high
efficiency, as it was for the strong scaling tests.

However, please note that in the weak scaling tests, each curve corresponding to three different matrix
sizes for each of the X-axis values (the number of SoCs). For example, for the curve corresponding to
n=400 the sequence of data is: 1 SoC →n=400, 2 SoCs →n=500, 4 SoCs →n=640. In particular, for 4
SoCs the efficiency drops as it has an implied matrix size of n=640 and the data set is large enough to
cause a significant miss rate increase in the L2 cache (not shown in the figures).

0.5

1

2

1 2 4

size=400

size=320

size=200

size=250

Speedup (t1/tN)

No. of SoCs

(4) (8) (16) (No. of Cores)

User only

Figure 18: Weak Scaling for benchmark “Dense Matrix Multiplication” (Square Matrices). Matrix size var ies: 200,
250, 320 and 400 on each single SoC (to keep the work almost constant on each core/SoC). Block size is constant and
equal to 10. The time used for calculating the speedup only accounts User Time (without Kernel Time).

Finally, we explored the sensitivity to the thread granularity, by choosing a larger block size. A larger
block generates longer X-threads to process such matrix block. In Figure 5, we analyzed the situation
for three matrix sizes (n=200, n=400, n=800) and while the block size b is equal to 10 and 25.

As we can see, having larger threads implies fewer opportunities for parallelism, as the number of X-
threads is smaller. This is particularly evident for the curve for n=200 and b=25. Moreover, there are
combinations of n and b (e.g., n/b=16) where the scaling is better as the number of available threads is
a multiple of the number of cores. For larger matrix sizes (e.g. 800) as noticed, the L2 cache tends to
suffer more misses, thus affecting the performance.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 28 of 38

No. of SoCs

(4) (8) (16) (No. of Cores)

1

2

4

1 2 4

size=800,b=10

size=400,b=25

size=800,b=25

size=400,b=10

size=200,b=10

size=200,b=25
Too few

threads

Speedup (t1/tN)

Figure 19: Effect of the thread granularity (through the block size) on strong scaling for benchmark “Dense Matrix
Multiplication” (Square Matrices). Matrix size var ies: 200,250,320,400. Block size assumes values 10 and 25. The

time used for calculating the speedup accounts only for the User Time (without Kernel Time).

Strong and weak scaling tests are therefore useful to analyze the performance of the embedded system
constituted of N SoCs. The current results show a good potential for achieving scalability across
SoCs.

Figure 20: Execution Time dependency on L2-cache miss rate in case of 1, 2, 4 nodes.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 29 of 38

8 Confirmation of DoA objectives and Conclusions
Here we describe how the deliverables conform to the DoA stated objectives.

PLANNED DELIVERED

DELIVERABLE:

• Initial AXIOM Evaluation Platform (AEP)
definition and initial tests

Report

We have presented the AXIOM Evaluation Platform (AEP). Its motivation is driven by the possibility
to flexibly experiment the AXIOM system by using off-the-shelf Operating Systems like Linux and
the possibility of architectural (timing) and functional modeling for easier and faster prototyping. This
should pave the way for FPGA prototyping, which has been already used by some of the partners for
the components that were already mature for such experimentation (e.g., the AXIOM-link).

In order to permit any easy deployment we created the MYINSTALL tool that makes the installation
process fast and repeatable in about 10 minutes (manually it may be subject to variations and can take
a day); this is very useful since we often repeat the installation process.

In order to allow a systematic Design Exploration we created the MYDSE tool (about 200kB of shell
scripting) so that we can control the simulations with little effort and we can exclude most of errors
during the setup of experiments. This therefore permits a more rigorous and repeatable experimenta-
tion.

Some other tools had been prepared for a proper investigation of the results through tables and graphs.

Finally, we show some initial results for the Matrix Multiplication benchmarks: the AEP allows for
investigating all details related to the execution of a single program on multiple boards.

Therefore the objectives of the first year have been meet or exceeded (e.g. with the XSMLL API spec-
ification and its implementation and with the visualization tools). Further challenges are foreseen be-
fore arriving to a possibly commercially exploitable system.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 30 of 38

References
1. Dan Bonachea; GASNet Specification, v1.1. Report No. USB/CSD-02-1207. CS Division, EECS Depart-

ment, University of California, Berkeley; October 2002; http://gasnet.lbl.gov/CSD-02-1207.pdf
2. Javier Bueno, Xavier Martorell, Rosa M. Badia, Eduard Ayguadé, Jesús Labarta; Implementing OmpSs

support for regions of data in architectures with multiple address spaces. ICS 2013: 359-368 (2013).
3. Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell, Xavier Martorell, Judit

Planas; OmpSs: a Proposal for Programming Heterogeneous Multi-Core Architectures. Parallel Processing
Letters 21(2): 173-193 (2011).

4. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Version 3.0; September
2012; http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

5. R. Giorgi, "Scalable Embedded Systems: Towards the Convergence of High-Performance and Embedded
Computing", Proc. 13th IEEE/IFIP Int.l Conf. on Embedded and Ubiquitous Computing (EUC 2015), Oct.
2015.

6. DMA driver for AXIOM: https://git.axiom-project.eu/?p=axiom-dma
7. XSMLL API for AXIOM: https://git.axiom-project.eu/?p=XSMLL
8. OmpSs website: http://pm.bsc.es/ompss
9. COTSon website: http://cotson.sourceforge.net/
10. Argollo, E., Falcón, A., Faraboschi, P., Monchiero, M., and Ortega, D. 2009. COTSon: infrastructure for

full system simulation. SIGOPS Oper. Syst. Rev. 43, 1 (Jan. 2009), 52-61
11. Palermo, G.; Silvano, C.; Zaccaria, V., "ReSPIR: A Response Surface-Based Pareto Iterative Refinement

for Application-Specific Design Space Exploration," in Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on , vol.28, no.12, pp.1816-1829, Dec. 2009

12. Silvano, C.; Fornaciari, W.; Palermo, G.; Zaccaria, V.; Castro, F.; Martinez, M.; Bocchio, S.; Zafalon, R.;
Avasare, P.; Vanmeerbeeck, G.; Ykman-Couvreur, C.; Wouters, M.; Kavka, C.; Onesti, L.; Turco, A.;
Bondi, U.; Mariani, G.; Posadas, H.; Villar, E.; Wu, C.; Fan Dongrui; Zhang Hao; Shibin, T., "MUL-
TICUBE: Multi-objective Design Space Exploration of Multi-core Architectures," in VLSI (ISVLSI), 2010
IEEE Computer Society Annual Symposium on , vol., no., pp.488-493, 5-7 July 2010

13. Giovanni Mariani, Aleksandar Brankovic, Gianluca Palermo, Jovana Jovic, Vittorio Zaccaria, and Cristina
Silvano. 2010. A correlation-based design space exploration methodology for multi-processor systems-on-
chip. In Proceedings of the 47th Design Automation Conference (DAC '10). ACM, New York, NY, USA,
120-125.

14. Mariani, G.; Palermo, G.; Silvano, C.; Zaccaria, V., "Multi-processor system-on-chip Design Space Explo-
ration based on multi-level modeling techniques," in Systems, Architectures, Modeling, and Simulation,
2009. SAMOS '09. International Symposium on , vol., no., pp.118-124, 20-23 July 2009.

15. R. Giorgi, R. Badia, F. Bodin, A. Cohen, P. Evripidou, P. Faraboschi, B. Fechner, G. Gao, A. Garbade, R.
Gayatri, S. Girbal, D. Goodman, B. Khan, S. Koliaï, J. Landwehr, N. Minh, F. Li, M. Lujàn, A. Mendel-
son, L. Morin, N. Navarro, T. Patejko, A. Pop, P. Trancoso, T. Ungerer, I. Watson, S. Weis, S. Zuckerman,
M. Valero, "TERAFLUX: Harnessing dataflow in next generation teradevices ", ELSEVIER Microproces-
sors and Microsystems, Netherlands, Amsterdam, vol. 38, no. 8, Part B, 2014, pp. 976-990.

16. M. Solinas, M. Badia, F. Bodin, A. Cohen, P. Evripidou, P. Faraboschi, B. Fechner, G. Gao, A. Garbade,
S. Girbal, D. Goodman, B. Khan, S. Koliaï, F. Li, M. Lujàn, A. Mendelson, L. Morin, N. Navarro, A. Pop,
P. Trancoso, T. Ungerer, M. Valero, S. Weis, S. Zuckerman, R. Giorgi, "The TERAFLUX project: Ex-
ploiting the dataflow paradigm in next generation teradevices", IEEE Proc. 16th EUROMICRO-DSD, San-
tander, Spain, no. 6628287, 2013, pp. 272-279.

17. Blem, E.; Menon, J.; Sankaralingam, K., "Power struggles: Revisiting the RISC vs. CISC debate on con-
temporary ARM and x86 architectures," in High Performance Computer Architecture (HPCA2013), 2013
IEEE 19th International Symposium on , vol., no., pp.1-12, 23-27 Feb. 2013

18. AMD Opteron A-series: http://www.amd.com/en-us/products/server/opteron-a-series
19. AMD K12 architecture: http://partner.amd.com/Documents/MarketingDownloads/en/AMD-FAD-2015-

Codename-Decoder-FINAL.pdf
20. Li, Sheng, et al. "McPAT: an integrated power, area, and timing modeling framework for multicore and

manycore architectures." Proceedings of the 42nd Annual IEEE/ACM International Symposium on Micro-
architecture. ACM, 2009.

21. Xilinx Inc., “Zynq Series.” [Online]. Available: http://www.xilinx.com/content/xilinx/en/products/silicon-
devices/soc/zynq-7000.html

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 31 of 38

22. M. Banzi, Getting Started with Arduino. Sebastopol, CA: Make Books - Imprint of: O’Reilly Media, 2008.
23. Xilinx Inc., “Xilinx UltraScale Architecture.” [Online]. Available:

http://www.xilinx.com/support/documentation/white_papers/wp435-Xilinx-UltraScale.pdf
24. S. Lyberis, G. Kalokerinos, M. Lygerakis, V. Papaefstathiou, D. Tsaliagkos, M. Katevenis, D. Pnevmatika-

tos, and D. Nikolopoulos, “Formic: Cost-efficient and scalable prototyping of manycore architectures,” in
FCCM, 2012, pp. 61–64.

25. E. Palazzetti, Getting Started with UDOO, Resha Raman, Ed. Packt Publishing, 2015.
26. J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. Badia, E. Ayguade, and J. Labarta, “Pro-

ductive cluster programming with OmpSs,” Euro-Par 2011 Parallel Processing, pp. 555–566, 2011.
27. Heirman et. Al. - ISPASS Tutorial The SNIPER multi-core simulator
28. Carl J. Mauer et al. Full system timing-first simulation. In SIGMETRICS02, pp. 108-116, June 2002’.
29. Falcon, A.; Faraboschi, P.; Ortega, D., "Combining Simulation and Virtualization through Dynamic Sam-

pling," in Performance Analysis of Systems & Software, 2007. ISPASS 2007. IEEE International Sympo-
sium on , vol., no., pp.72-83, 25-27 April 2007

30. R. Giorgi, “Transactional memory on a dataflow architecture for accelerating Haskell,” WSEAS Trans.
Computers, vol. 14, pp. 794–805, 2015.

31. R. Giorgi and P. Faraboschi, “An introduction to DF-Threads and their execution model,” in IEEE MPP,
Paris, France, Oct. 2014, pp. 60–65.

32. R. Giorgi and A. Scionti, “A scalable thread scheduling co-processor based on data-flow principles,”
ELSEVIER Future Generation Computer Systems, vol. 53, pp. 100–108, July 2015.

33. S. Weis, A. Garbade, B. Fechner, A. Mendelson, R. Giorgi, and T. Ungerer, “ Architectural support for
fault tolerance in a Teradevice dataflow system,” Springer Int.l Journal of Parallel Programming, pp. 1–
25, May 2014.

34. D. Theodoropoulos et al., “The AXIOM project (agile, extensible, fast i/o module),” in IEEE Proc. 15th
Int.l Conf. on Embedded Computer Systems: Architecture, MOdeling and Simulation, July 2015.

35. R. Giorgi, "Scalable Embedded Systems: Towards the Convergence of High-Performance and Embedded
Computing", Proc. 13th IEEE/IFIP Int.l Conf. on Embedded and Ubiquitous Computing (EUC 2015), Oct.
2015.

36. “Scientific data: open access to research results will boost Europe’s innovation capacity.”
http://europa.eu/rapid/press-release IP-12-790 en.htm.

37. “EU Open Science and Open Access Policies.”
 http://ec.europa.eu/ research/swafs/index.cfm?pg=policy&lib=science

38. R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Meas-
urement, Simulation, and Modeling. Wiley, May 1991.

39. D. Lilja, "Measuring Computer Performance: A Practitioner's Guide", Cambridge Univ. Press, 2005.
40. L. Eeckout, "Computer Architecture Performance Evaluation Methods", Morgan & Claypool Publishers,

2010.
41. The JUMP Software DSM System. http://www.snrg.cs.hku.hk/srg/html/jump.htm
42. Zynq-7000 Technical Reference Manual :

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
43. Zynq Ultrascale+ Technical Reference Manual:

http://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
44. S. Wong, A. Brandon, F. Anjam, R. Seedorf, R. Giorgi, Z. Yu, N. Puzovic, S. Mckee, Magnus Sjaelander

and Georgios Keramidas, "Early Results from ERA – Embedded Reconfigurable Architectures", 9th IEEE
Int.l Conf. on Industrial Informatics (INDIN), Lisbon, Portugal, Jul 2011, pp. 816-822.

45. ERA Benchmark suite: http://www.dii.unisi.it/~giorgi/ebs/
46. S. Wong, L. Carro, S. Kavvadias, G. Keramidas, F. Papariello, C. Scordino, R. Giorgi, S. Kaxiras, "Em-

bedded reconfigurable architectures", ACM Proc. 2012 international conference on Compilers, architec-
tures and synthesis for embedded systems (CASES), New York, NY, USA, 2012, pp. 2.

47. Wong Stephan, Carro Luigi, Rutzig Mateus and Matos Debora Motta, Giorgi Roberto, Puzovic Nikola ,
Kaxiras Stefanos, Cintra Marcelo, Desoli Giuseppe, Gai Paolo, Mckee Sally A., Zaks Ayal, "ERA - Em-
bedded Reconfigurable Architectures", Springer New York, ISBN:978-1-4614-0061-5, Aug 2011, pp. 239-
259.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 32 of 38

APPENDIX A -- XSMLL API draft 0.3
This is the initial specification of the XSMLL API internally published in June 2015 and made public
with this document as of 10th February 2016; the API is still under development and can therefore be
updated during this project.

=== ==================================
 2 X S M - L L
 3 == ===================================
 4 The eXtended Shared Memory (XSM) Low Level Specifi cation (draft 0.3)
 5 Roberto Giorgi - University of Siena, Italy - 01 F ebruary 2015
 6 == ===================================
 7 $Id: README01-xsmll 19 2015-06-20 14:00:32Z giorgi $
 8 DISCLAIMER: this specification is WORK IN PROGRESS -- positive comments are welcome
 9
 10 -- -----------------------------------
 11 INTRODUCTION (DO NOT SKIP)
 12 -- -----------------------------------
 13
 14 XSM DEFINITIONS
 15 ---------------
 16 X-thread
 17 A function that expects no parameters and returns no parameters.
 18 The body of this function can refer to any memory location for which
 19 it has got the pointer through XSM functio n calls (e.g., xpreload, xpoststor,
 20 xsubscribe, ...). An X-thread is identifie d by an object of type xtid_t
 21 (X-thread identifier). In other words:
 22 typedef void (*xthread_t)(void)
 23
 24 xtid_t
 25 A type that combines two objects: a thread identifier (a number from 1
 26 through a XSM_MAX_THREAD_ID) and an offset inside its input frame.
 27 Given an 'xtid_t tid' the thread number is obtained by the _X_TID(tid) macro,
 28 while the frame offset is obtained by the _X_OFF(tid) macro.
 29
 30 INPUT_FRAME
 31 A buffer which is allocated in the local m emory and contains the input
 32 values for the current X-thread.
 33
 34 OUTPUT_FRAME
 35 A buffer which is allocated in the local m emory and contains values
 36 to be used by other X-threads (consumer X- threads)
 37
 38 SYNCHRONIZATION_COUNT
 39 A number which is initially set to the num ber of input values (or events)
 40 needed by an X-thread. The SYNCHRONIZATION _COUNT has to be decremented each
 41 time the expected data is written in an OU TPUT_FRAME.
 42
 43 GUEST (SPACE)
 44 The simulated space.
 45 This the environment that is simulated ins ide a virtual machine (as a
 46 full-system simulation). This environment does not necessarily know whether
 47 is running as a virtual machine or as a re al system.
 48
 49 HOST (SPACE)
 50 The simulation space.
 51 This environment models both the behavior, the timing, the power
 52 (or anything else) that is related to the machine that has to be modeled.
 53 XSMU
 54 A hardware/software unit which manages the XSM interface at low level.
 55
 56
 57 == ===================================
 58 C level API for XSM-LL - a set of C callable funct ions to manage XSM and X-threads
 59 == ===================================
 60
 61 XSM BASIC FUNCTIONS
 62 -------------------
 63 xtid_t xschedulez(xthread_t ip, uint32_t sc, u int32_t sz)
 64 Schedules an X-thread whose name (instruct ion pointer) is specified by 'ip'.
 65 The thread expects sc inputs which are sto red in its INPUT_FRAME of size 'sz'
 66 (in bytes).
 67 Returns an X-thread identifier (with 0 int ernal offset -- see above
 68 definition).
 69
 70 void xdestroy()
 71 Called at the end of an X-thread to signal that any allocated resource
 72 belonging to the current X-thread can be f reed up.
 73

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 33 of 38

 74 void* xsubscribe(
 75 xtid_t tloc, uint32_t regionstart, uint32_ t regionsize, uint8_t type)
 76 Subscribes a memory region that is going t o be shared by several X-threads
 77 with some given Read/Write protection spec ified by 'type':
 78 type = 0x01 -- read-only access
 79 type = 0x02 -- write-only access
 80 type = 0x03 -- read-write access
 81 type = 0x00,0x0x-0xFF (reserved values)
 82 The region is specified by its offset ('re gionstart') inside a preallocated
 83 shared heap and its size ('regionsize') in bytes.
 84 Both regionstart and regionsize are aligne d to 8 bytes (64 bits).
 85 The pointer to the region is both returned by this function and stored in
 86 the tloc (thread-location) indicated (see the examples below). Please note
 87 that only the specified thread will have w rite access (if the protection
 88 bits specified so), all other thread will get an error if they accidently
 89 try to read that region once it is under " write protection". Read is
 90 possible if the read-only has been specifi ed.
 91 Read-write modality is used to implement t ransactional memory consistency.
 92
 93 void xpublish(void* regptr)
 94 Publishes the modifications to a previousl y subscribed region pointed by
 95 regptr. The whole subscribed region is pub lished. To publish an arbitrary
 96 portion use: xpublish_range.
 97
 98 uint64_t xtmbegin(uint64_t s1, uint64_t s2)
 99 Begins a transactions on the TM region poi nted by s1 and having a lenght s2.
 100 Returns 1 if the transaction can start or 0 otherwise.
 101
 102 uint64_t xtmend(uint64_t s1, uint64_t s2)
 103 Ends a transactions on the TM region point ed by s1 and having a lenght s2.
 104
 105 xwrite
 106 TBD
 107 xread
 108 TBD
 109 xsend
 110 TBD
 111 xrecv
 112 TBD
 113
 114
 115 XSM AUXILIARY FUNCTIONS
 116 -----------------------
 117 void* xpreload()
 118 Called at the beginning of an X-thread to get the INPUT_FRAME pointer
 119
 120 void* xpoststor(xtid_t tid)
 121 Called when an X-thread needs to write out put values for a consumer X-thread
 122 tid (which is probably scheduled right bef ore).
 123
 124 void xdecrease(xtid_t tid, int n)
 125 This is used to the decrease the SYNCHRONI ZATION_COUNT by n. Typically this
 126 is issued after each write operation or - cumlatively - after n operations
 127 (n is always not greater than the inital S YNCHRONIZATION_COUNT)
 128
 129
 130 XSM EXTRA FUNCTIONS
 131 -------------------
 132 void xconstrain(xtid_t tid, uint64_t nmask)
 133 Binds the execution of the X-thread tid to the nodes specified by the
 134 node-mask nmask (limited to XSM_MAX_NODE_M ASK nodes, bit0 for node-0, bit1
 135 for node-1, ...)
 136
 137 xtid_t xschedule64(xthread_t ip, uint32_t sc)
 138 Variant of the xschedulez functioni with f ixed size (64 bits) inputs.
 139 Schedules an X-thread whose name (instruct ion pointer) is specified by ip.
 140 The thread expects sc inputs of size 64 bi ts which are stored in its
 141 INPUT_FRAME.
 142 Returns an X-thread identifier (with 0 int ernal offset -- see above
 143 definition).
 144
 145 void xpublish_range(void* regptr, size_t sz)
 146 Publishes the modifications to a previousl y subscribed region.
 147 This can be a subregion pointed by regptr with size sz.
 148
 149 void xacquire(void* regptr)
 150 Reloads the subscribed region identified b y regionprt
 151
 152 void xacquire_range(void* regptr,size_t sz)
 153 Reloads the subscribed region identified b y regionprt
 154
 155 void* xalloc(uint64_t tid, uint32_t sz, uint64 _t type)
 156 Allocates a region of size sz bytes with a given type to be used by the
 157 X-thread indicated by tid. This is a simpl ified version of the xsubscribe,
 158 where:

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 34 of 38

 159 i) the user does not need to specify wh ere the region is positioned inside
 160 the preallocated shared heap.
 161 ii) its up to the user to write the ret urned pointer into the OUTPUT_FRAME
 162 belonging to the tid X-thread
 163
 164 void xfree(uint64_t regprt)
 165 Frees a region identified by the region po inter regptr
 166
 167 void xprotect(uint64_t regptr, uint64_t type)
 168 Changes the protection bits (type -- meani ng as in xsubscribe) of the region
 169 identified by regptr.
 170
 171
 172 XSM PERFORMANCE COUNTERS FUNCTIONS
 173 ----------------------------------
 174 void xzonestart(uint8_t zone)
 175 Starts metrics collection for the specifie d zone of the code.
 176
 177 void xzonestop(uint8_t zone)
 178 Stops metrics collection for the specified zone of the code.
 179
 180 void xtimestamp()
 181 Clears the internal timestamp counters for the metrics/statistics related to
 182 XSM (these are metrics derived from the HO ST metrics/statistics, which are
 183 not modified by this function, they are on ly read)
 184
 185
 186 XRT FUNCTIONS (XSM RUN-TIME FUNCTIONS)
 187 --------------------------------------
 188 IMPORTANT NOTE
 189 --------------
 190 The XRT is currently enabled as a wrapper of the C main function.
 191 The 'int __wrap_main(int argc, char **argv)' calls the
 192 'int __real_main(int argc, char **argv)' f unction which maps to the
 193 application main thanks to the appropriate link-time option (see Makefile).
 194
 195 void xsm_set_nopf(void* nopf_ptr)
 196 Sets the run-time 'nop' functions that are called in case of no work to be
 197 done.
 198
 199 void xsm_set_worker_stack(void* tstack_ptr)
 200 Sets the worker stack that is used to allo cate a local INPUT_FRAME or
 201 OUTPUT_FRAME.
 202
 203 void xsm_inject(uint64_t val)
 204 Diagnostic/Instrumentation function that c an be used to pass a value 'var;'
 205 from the GUEST environment to the HOST env ironment.
 206
 207 void xsm_reset(void* owmptr, uint32_t owmsz, u int32_t stacksz)
 208 Loads the pointers for several types of me mory regions:
 209 - subscribable regions (base pointer: o wmptr, size: owmsz)
 210 - default size of worker stack (used fr om frames): stacksz
 211 Then sends and initial reset to the HOST r untime.
 212
 213 void xsm_setbuf0(void *buf)
 214 Sets the internal (HOST) XSM buffer #0 for metrics/statistics to the GUEST
 215 buffer 'buf'
 216
 217 void xsm_setbuf1(void *buf)
 218 Sets the internal (HOST) XSM buffer #1 for metrics/statistics to the GUEST
 219 buffer 'buf'
 220
 221 void xsm_exit(void)
 222 Ends the execution on the node which calls this function.
 223
 224 void xsm_printstats(void)
 225 Prints the content of internal metrics/sta tistics counters on the GUEST
 226 stdout.
 227
 228
 229 XSM GUEST ENVIRONMENT VARIABLES
 230 -------------------------
 231 XSM_NWORKERS
 232 Number of XSM workers per node. Default i s the number of cores.
 233 It can be set as the number of cores or a slightly larger value.
 234 The runtime ties each worker to each core in round robin.
 235
 236 XSM_NODEID
 237 Numeric identifier of the execution node, starting from 1. Default 1.
 238
 239 XSM_NNODES
 240 Number of executions nodes. Default 1.
 241
 242 XSM_OWMSZ
 243 Size of the subscribable memory in bytes. Default XSM_DEFAULT_OWM_SIZE

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 35 of 38

APPENDIX B -- XSMLL coding example
The following examples are intended to show the coding style that could be achieved through source-
to-source compilation from higher level programming model. XSMLL is an execution model NOT a
programming model.

Sample code for fibx.c using the XSMLL API
 1 /*$Id: fibx.c 16 2015-05-22 09:12:04Z giorgi $ */
 2 #include "xsm.h"
 3 #include <stdio.h>
 4
 5 #define DEFAULTN 20
 6 #define THRESHOLD 10
 7 #define RECFIB
 8
 9 // reference version
 10 inline uint64_t serialfib(int n)
 11 {
 12 #ifdef RECFIB
 13 return n < 2 ? n : serialfib(n-1) + serial fib(n-2);
 14 #else
 15 uint64_t a=0,b=1;
 16 int i=0;
 17 for(; i < n; ++i) {
 18 uint64_t t = a + b;
 19 a = b;
 20 b = t;
 21 }
 22 return a;
 23 #endif
 24 }
 25
 26 typedef struct { xtid_t tloc; uint64_t n1; uin t64_t n2; } adder_s;
 27 void adder(void)
 28 {
 29 const adder_s* fp=xpreload();
 30 xtid_t xloc = fp->tloc;
 31 uint64_t *xp = xpoststor(xloc);
 32 xp[_X_OFF(xloc)] = fp->n1 + fp->n2;
 33 xdecrease(xloc,1);
 34 xdestroy();
 35 }
 36
 37 typedef struct { xtid_t tloc; uint64_t n; uint 64_t t; } fib_s;
 38 void fib(void)
 39 {
 40 const fib_s* fp=xpreload();
 41 uint64_t n = fp->n; // receive n
 42 uint64_t t = fp->t; // receive t (thresho ld)
 43 xtid_t xloc = fp->tloc; // target location
 44
 45 if (n < t) {
 46 uint64_t *tp = xpoststor(xloc);
 47 tp[_X_OFF(xloc)] = serialfib(n);
 48 xdecrease(xloc,1);
 49 }
 50 else {
 51 xtid_t xadd = xschedule64(&adder,3); / / spawn adder
 52 adder_s* tadd = xpoststor(xadd);
 53 tadd->tloc = xloc; // add.dst is this .dst
 54 xdecrease(xadd,1);
 55
 56 xtid_t xfib1 = xschedule64(&fib,3); / / spawn fib1
 57 fib_s* tfib1 = xpoststor(xfib1);
 58 tfib1->tloc = _XREF(xadd,1); // fib1. tloc is add[1]
 59 tfib1->n = n-1; // send fib1, n-1
 60 tfib1->t = t; // send fib1, threshold
 61 xdecrease(xfib1,3);
 62
 63 xtid_t xfib2 = xschedule64(&fib,3); / / spawn fib2
 64 fib_s* tfib2 = xpoststor(xfib2);
 65 tfib2->tloc = _XREF(xadd,2); // fib2. tloc is add[2]
 66 tfib2->n = n-2; // send fib2, n-2
 67 tfib2->t = t; // send fib2, threshold
 68 xdecrease(xfib2,3);
 69 }
 70 xdestroy();
 71 }
 72

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 36 of 38

 73
 74 uint64_t nn=0; // input, for checking purposes
 75 uint64_t th=0; // input, for checking purposes
 76
 77 typedef struct { uint64_t res; } report_s;
 78 void report(void)
 79 {
 80 const report_s* fp=xpreload();
 81 uint64_t res=fp->res;
 82 xdestroy();
 83 printf("++report\n");
 84 printf("xsm fib= %lu\n",res);
 85
 86 uint64_t ser_res = serialfib(nn);
 87
 88 printf(res==ser_res?"*** SUCCESS\n":"***FA ILURE\n");
 89 // xdestroy();
 90 }
 91
 92 int main(int argc, char **argv)
 93 {
 94 nn = DEFAULTN;
 95 th = THRESHOLD;
 96 if (argc > 1)
 97 nn = atoi(argv[1]);
 98 if (argc > 2)
 99 th = atoi(argv[2]);
 100 printf("computing fibonacci(%lu)\n",nn);
 101
 102 xtid_t xrep = xschedule64(&report,1); // s pawn reporter
 103 xconstrain(xrep,0x1); // constrain executi on on node 1
 104 xtid_t xfib = xschedule64(&fib, 3); // sp awn fib
 105 fib_s* tfib = (fib_s*)xpoststor(xfib);
 106 tfib->tloc = _XREF(xrep,0); // edge: fib.o ut -> report[0]
 107 tfib->n = nn;
 108 tfib->t = th;
 109 xdecrease(xfib,3);
 110 return 0;
 111 }

Sample code for mmx.c using the XSMLL API
 1 #include "xsm.h"
 2 #include <stdio.h>
 3 #include <stddef.h>
 4 #include <stdlib.h>
 5 #include <math.h>
 6 /*$Id: mmx.c 20 2015-06-21 21:28:11Z giorgi $* /
 7
 8 //#define __DEBUG
 9 //#define N 512
 10 //#define BLOCKSZ 8
 11 //#define XDATA_DOUBLE
 12 #define N 200
 13 #define BLOCKSZ 25
 14 //#define XDATA_SINGLE
 15 #define XDATA_INT64
 16 #include "xdebug.h"
 17
 18 #ifdef XDATA_SINGLE
 19 #define DATA float
 20 #endif
 21 #ifdef XDATA_DOUBLE
 22 #define DATA double
 23 #endif
 24 #ifdef XDATA_INT64
 25 #define DATA uint64_t
 26 #endif
 27 #define SIZE(M,N) (N*M*sizeof(DATA))
 28
 29 #define RB_SZ SIZE(N,N)
 30 #define RA_SZ SIZE(N,BLOCKSZ)
 31 #define RC_SZ SIZE(N,BLOCKSZ)
 32
 33 #define RC_OFF(j) (SIZE(N,j))
 34 #define RB_OFF(j) (SIZE(N,N)+SIZE(N,j))
 35 #define RA_OFF(j) (2*SIZE(N,N)+SIZE(N,j))
 36
 37 // xreport = finish barrier tid
 38 typedef struct { DATA *A; DATA *B; DATA *C; x tid_t xreport; } bmmul_s;

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 37 of 38

 39 void bmmul()
 40 {
 41 const bmmul_s *cfp = xpreload();
 42 const DATA *A = cfp->A;
 43 const DATA *B = cfp->B;
 44 DATA *C = cfp->C;
 45 int i, j, k;
 46
 47 printf("Working at C address: 0x%lx\n",(ui nt64_t)C);
 48 fflush(stdout);
 49 for (j = 0; j < BLOCKSZ; j++) {
 50 for (i = 0; i < N; i++) {
 51 DATA t = 0;
 52 for (k = 0; k < N; k++) {
 53 t += A[j * N + k] * B[k * N + i];
 54 }
 55 C[i + j * N] = t;
 56 }
 57 }
 58 xpublish(C);
 59 xdecrease(cfp->xreport,1); // decrement th e barrier count
 60 xdestroy();
 61 }
 62
 63 typedef struct { uint64_t *scsp; DATA *C; } re port_s;
 64 void report()
 65 {
 66 const report_s *cfp = xpreload();
 67 const DATA *C = cfp->C;
 68 const uint64_t *scsp = cfp->scsp;
 69 int i, j;
 70 int ok = 1;
 71 const uint64_t superchecksum = *scsp;
 72 xzonestop(1);
 73 xdestroy(); // XSM computations are finish ed at this point
 74
 75 print_matrix(C,N,N);
 76
 77 // Verify the SuperCheckSum
 78 uint64_t xchecksum = 0L;
 79 for (i = 0; i < N; i++) { // i = row poi nter
 80 for (j = 0; j < N; j++) { // j = colum n pointer
 81 xchecksum = (xchecksum + (int)(C[i *N + j])) &0xFF;
 82 }
 83 }
 84 if (superchecksum==xchecksum) ok = 1; else ok = 0;
 85 printf("CHECKSUM=%lu vs %lu OK=%d\n", xch ecksum, superchecksum, ok); fflush(stdout);
 86 printf("\n*** %s ***\n", ok ? "SUCCESS" : "FAILURE");fflush(stdout);
 87 }
 88
 89 typedef struct { xtid_t xr; } owm_matrix_mul_s ;
 90 void owm_matrix_mul() /* OWM version. Compute C=A*B. */
 91 {
 92 const owm_matrix_mul_s *fp = xpreload();
 93 xtid_t xr = fp->xr;
 94
 95 xtimestamp(); //resets timestamp statistic s so we count time from here
 96 int j,nb;
 97
 98 for (j=nb=0; j<N; j+=BLOCKSZ,++nb) {
 99
 100 xtid_t bm = xschedulez(&bmmul, 4, size of(bmmul_s));
 101 /* Region B (size N*N) stores th e entire matrix B */
 102 /* Region A (size N*BLOCKSZ) stores th e block of matrix A */
 103 /* Region C (size N*BLOCKSZ) stores th e computed result. */
 104 xsubscribe(XDST(bm, bmmul, A), RA_OFF(j), RA_SZ, _OWM_MODE_R);
 105 xsubscribe(XDST(bm, bmmul, B), RB_OFF(0), RB_SZ, _OWM_MODE_R);
 106 xsubscribe(XDST(bm, bmmul, C), RC_OFF(j), RC_SZ, _OWM_MODE_W);
 107
 108 // finish barrier
 109 bmmul_s* bm_fp = xpoststor(bm);
 110 bm_fp->xreport = xr;
 111 xdecrease(bm,4);
 112 }
 113 xdestroy();
 114 }
 115
 116 typedef struct { DATA *A; DATA *B; DATA *C; ui nt64_t *scs; xtid_t xm; } fill_matrix_s;
 117 void fill_matrix()
 118 {
 119 const fill_matrix_s *cfp = xpreload();
 120 DATA *A = cfp->A;
 121 DATA *B = cfp->B;
 122 DATA *C = cfp->C;
 123 uint64_t *scs = cfp->scs;

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D7.1
Deliverable name: Initial AXIOM Evaluation Platform (AEP) definition and initial tests
File name: AXIOM-D71-v1.docx Page 38 of 38

 124 xtid_t xm = cfp->xm;
 125 int i, j, cr, cc;
 126 uint64_t superchecksum;
 127 srand(12345); // start always with same nu mbers in the matrices (optional)
 128 //C=0
 129 for (i = 0; i < N; i++) {
 130 for (j = 0; j < N; j++) {
 131 C[i * N + j] = 0;
 132 }
 133 }
 134 //B
 135 for (i = 0; i < N; i++) {
 136 cr = 0;
 137 for (j = 0; j < N-1; j++) {
 138 int val1 = rand()&0xFF;
 139 cr = (cr + val1) &0xFF;
 140 B[i*N+j] = (DATA)val1;
 141 }
 142 B[i*N+N-1] = (DATA)cr;
 143 }
 144 //A
 145 for (j = 0; j < N; j++) {
 146 cc = 0;
 147 for (i = 0; i < N-1; i++) {
 148 int val2 = rand()&0xFF;
 149 cc = (cc + val2) &0xFF;
 150 A[i*N+j] = (DATA)val2;
 151 }
 152 A[(N-1)*N+j] = (DATA)cc;
 153 }
 154 // Calculate the SuperCheckSum
 155 superchecksum = 0;
 156 for (i = 0; i < N; i++) {
 157 superchecksum =
 158 (superchecksum + (uint64_t)(A[(N-1) *N+i]) * (uint64_t)(B[i*N+N-1]))&0xFF;
 159 }
 160 *scs = (superchecksum<<2)&0xFF;
 161
 162 // Publish the Filled Matrices and the exp ected SuperCheckSum
 163 xpublish(A); xpublish(B); xpublish(C); xpu blish(scs);
 164
 165 // Start the multiply
 166 xdecrease(xm,1);
 167 xdestroy();
 168 }
 169
 170 int main(int argc, char **argv)
 171 {
 172 xzonestart(1);
 173 xtid_t xf = xschedulez(&fill_matrix, 5, si zeof(fill_matrix_s));
 174 xtid_t xr = xschedulez(&report, N / BLOCKS Z, sizeof(report_s));
 175 xtid_t xm = xschedulez(&owm_matrix_mul, 1, sizeof(owm_matrix_mul_s));
 176 xconstrain(xr,1); // force on node 1
 177 xconstrain(xm,1); // force on node 1
 178 xconstrain(xf,1); // force on node 1
 179
 180 xsubscribe(XDST(xf, fill_matrix, A), RA_OF F(0), SIZE(N, N), _OWM_MODE_W);
 181 xsubscribe(XDST(xf, fill_matrix, B), RB_OF F(0), SIZE(N, N), _OWM_MODE_W);
 182 xsubscribe(XDST(xf, fill_matrix, C), RC_OF F(0), SIZE(N, N), _OWM_MODE_W);
 183 xsubscribe(XDST(xf, fill_matrix, scs), RA_ OFF(N), sizeof(uint64_t), _OWM_MODE_W);
 184 fill_matrix_s *xf_fp = xpoststor(xf);
 185 xf_fp->xm = xm;
 186
 187 owm_matrix_mul_s *xm_fp = xpoststor(xm);
 188 xm_fp->xr = xr;
 189
 190 // Schedule final check
 191 xsubscribe(XDST(xr, report, scsp), RA_OFF(N), sizeof(uint64_t), _OWM_MODE_R);
 192 xsubscribe(XDST(xr, report, C), RC_OFF(0), SIZE(N, N), _OWM_MODE_R);
 193
 194 xdecrease(xf, 5);
 195 return 0;
 196 }

