Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

H2020 FRAMEWORK PROGRAMME
ICT-01-2014: Smart Cyber-Physical Systems

PROJECT NUMBER: 645496

ADEOM

Agile, eXtensible, fast I/0 Module for the cyber-physical era

D4.1 - Programming Model Extensions

Due date of deliverable: 31* January 2016
Actual Submission: 9" February 2016

Start date of the project: 1* February 2015 Duration: 36 months

Lead contractor for the deliverable: BSC

Revision: See file name in document footer.

Project co-founded by the European Commission
within the HORIZON FRAMEWORK PROGRAMME (2020)

Dissemination Level: PU

PU Public

PP Restricted to other programs participant (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)
co Confidential, only for members of the consortium (including the Commission Services)

Change Control

Version# | Date Author Organization | Change History
0.1 18.01.2016 Xavier Martorell BSC v0.1

0.3 21.01.2016 Paolo Gai EVI v0.3

0.5 25.01.2016 Daniel Jimenez BSC v0.5

0.7 27.01.2016 Dimitris Theodoropoulos FORTH v0.7

1.0 06.01.2016 Xavier Martorell BSC v1.0

1.1 08.02.2015 Jem Macy, Roberto Giorgi | UNISI Final version

Release Approval

Name Role Date
Xavier Martorell WP Leader 08.02.2015
Roberto Giorgi Project Coordinator for formal deligble 09.02.2015

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 1 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

The following list of authors will be updated to reflect the list of contributors to the document.

Daniel Jiménez, Carlos Alvarez, Xavier Martorell
CS Department
BSC — AXIOM

Paolo Gai
CS Department
Evidence — AXIOM

Dimitris Theodoropoulos, Dionisios Pnevmatikatos
CS Department
FORTH - AXIOM

© 2015-2018 AXIOM Consortium, All Rights Reserved.

Document marked as PU (Public) is published in Italy, for the AXIOM Consortium, on the www.AXIOM-project.eu web site
and can be distributed to the Public.

All other trademarks and copyrights are the propefttheir respective ownershe list of author does not imply any claim
of ownership on the Intellectual Properties described in this document.

The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for er-
rors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the
use of the information contained in this document.

This document is furnished under the terms of the AXIOM License Agreement (the "License") and may only be used or cop-
ied in accordance with the terms of the License. The information in this document is a work in progress, jointly developed
by the members of AXIOM Consortium ("AXIOM") and is provided for informational use only.

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets
owned by or licensed to AXIOM Partners. The partners reserve all rights with respect to such technology and related mate-
rials. Any use of the protected technology and related material beyond the terms of the License without the prior written
consent of AXIOM is prohibited. This document contains material that is confidential to AXIOM and its members and licen-
sors. Until publication, the user should assume that all materials contained and/or referenced in this document are confi-
dential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example, references
to publicly available forms or documents).

Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited with-
out the prior written consent of AXIOM or such other party that may grant permission to use its proprietary material. The
trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of AXI-
OM, its members and its licensors. The copyright and trademarks owned by AXIOM, whether registered or unregistered,
may not be used in connection with any product or service that is not owned, approved or distributed by AXIOM, and may
not be used in any manner that is likely to cause customer confusion or that disparages AXIOM. Nothing contained in this
document should be construed as granting by implication, estoppel, or otherwise, any license or right to use any copyright
without the express written consent of AXIOM, its licensors or a third party owner of any such trademark.

Printed in Siena, Italy, Europe.

Part number: Please refer to the File name in the document footer.

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE AXIOM SPECIFICATION IS PROVIDED BY AXIOM TO MEMBERS "AS IS" WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.

AXIOM SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS,
DATA OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE SPECIFICATION, WHETHER
IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 2 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

TABLE OF CONTENTS
EXE@CULIVE SUIMIMATY .oouiuiirisssssscsmssasssssssssssasssssssssssesssssssssssssssssenes 5

B I 1 o0 X6 L1 Ut 00 o PR |
1.1 DOCUMENT STFUCTUTcccccircisssnssssss s sssssssssssssss s s sssssassmssmssassassassssssnssnssnssmssassassssssnssnssnssnsnnssn
1.2 Relation to other deliverables..........
1.3 Tasks involved in this deliverable

2 Programming Model EXtenSions......cssssssssssssssssssssssssssssssasssssns 6
2.1 Introduction to the OmpSs Programming Modelcouiiinsssnsssmnmsnnssssssssssssssssnsnns 6
2.2 OmpSs extensions for the FPGAS ... 9
2.3 Support for OMPSS@CIUSLET ... s 12

3 Support for distributed environments........i——————————— 12
Option 1: GASNet conduit based directly on the AXIOM network interface (FORTH)14
Option 2a: GASNet conduit based on XSMLLccccuiimmmsmsmmsmsmmsmsssssssssssssssssssssssssssssssssssasssssssss 14
Option 2b: Nanos++ plugin based 0n XSMLL.......cccommssssssssssssssssssas 15
Option 3: Mercurium integration With XSMLL.......cmmsssssssssssssssssssssasssssssss 15

4 Communication layer ... 19

5 Preliminary evaluations ...
5.1 PS RAM to PL BRAM analysiS.....mmmmmmmmmmsssssssasssssssnns
5.2 Asynchronous vs Synchronous memory transfersuu..
5.3 Master/worker thread design in the Nanos++ runtime
5.4 PSRAM (host) to PL RAM (FPGA) evaluationmmsmssssssssssssssssssssssssssses

6 Confirmation of DOA 0DJECHIVESccommmsmsmsmsmsmsmsmmssssmsssssssssmsssssssssssssssssssssssssssssssssess 2 7

7 0 1 T 10 T) 27
2SS] A=Y 4 Lo 28
TABLE OFFIGURES-

FIGURE 1 — OMPSS TARGET AND TASK DIRECTIVES 8
FIGURE 2- ARCHITECTURAL VIEW RELATED TO THE SUPPORT OF DISTRIBUTED ENVIRONMENTS. 13
FIGURE 3 - OVERVIEW OF THE NI STRUCTURE AND ITS CONFIGURATION FROM THE HOST CPU VIA THE SOFTWARE INTERFACE. ..ccvuueerernenns 18

FIGURE 4 - BASIC STRUCTURE OF THE XILINX ZYNQ CHIP AND THE CONNECTIVITY OF THE ARM CORES (PS) wiTH THE FPGA LocIic (PL) 19
FIGURE 5 - ACCUMULATED MEMORY BANDWIDTH (IN MBYTES/S) USING UP TO SEVEN PS TO PL CONNECTION PORTS (STANDALONE

EXECUTION, 1 ARM CORE). 20
FIGURE 6 - INPUT (PS TO PL) MEMORY BANDWIDTH FOR EACH OF THE PL TO PS CONNECTIONS. 21
FIGURE 7 - OuTPUT (PL TO PS) MEMORY BANDWIDTH FOR EACH OF THE PL TO PS CONNECTIONS. 22
FIGURE 8 - INPUT (PS TO PL) MEMORY BANDWIDTH USING 1 OR 2 ACP-CONNECTED DEVICES, AND 1 OR 2 THREADS. .cvovvumrmmreeeressrseeesesssens 23
FIGURE 9- OUTPUT (PL TO PS) MEMORY BANDWIDTH USING 1 OR 2 ACP-CONNECTED DEVICES, AND 1 OR 2 THREADS. ccccvusreressmeessssssssssees 23
FIGURE 10- PERFORMANCE OBTAINED FROM A TILED MATRIX MULTIPLICATION BENCHMARK (MATRIX SIZE 1024x1024, TILE SIZE

128x128) IN GFLOPS. 24
FIGURE 11- EXECUTION TIME RESULTS FOR THE MATRIX MULTIPLICATION (MATRIX SIZE 1024x1024, TILE SIZE 128X128)...couuverermrreennne 25
FIGURE 12— HETEROGENEOUS PERFORMANCE ESTIMATION VS. REAL EXECUTION. 26
FIGURE 13- MEMORY TRANSFER COMPARISON PS RAM To PL RAM vs. PS RAM To PL BRAM 27

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 3 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

GLOSSARY

ACP — Accelerator Coherency Port: an ARM AXI 644atrt that can be used for DMA data transfers
to the Zyng FPGA. It is suitable when there is adh® keep coherency with the memory
hierarchy on the processor side

AXI — a proprietary protocol for buses introducgd&RM Ltd

AXIOM-acc — an FPGA accelerated system that perfoargiven function

AXIOM-arch — the architecture of an AXIOM (module) doard

AXIOM-core — the cores where the computations ruar AXIOM board

AXIOM-fpga — the programmable logic part in an AX¥board

AXIOM:-link — the interconnects that permits boaodioard communication in AXIOM
Bitstream — the binary code used for configuring

BRAM — Block-RAM: a fast RAM that is available iné FPGA slices (in smaller blocks)
CUDA - NVIDIA programming model for GPUs

Conduit — A software stub that connects GASNet givan network protocol or programming model
Device — in this context: it is the physical systévat runs a ‘device-annotated’ part of the code
DMA — Direct Memory Access: a separate masterc¢hattake over local memory transfers
eMMC — Embedded Multi Media Card

FPGA — Field Programmable Gate Array

FPGA device — a device implemented on the FPGAtelarate a portion of a program. In this doc-
ument, it is used as a synonym of accelerator

GASNet — Global Address Space over Network: israyuage-independent, low-level networking
layer that provides network independent commuroogbirimitives

GP — General-Purpose Port: an ARM AXI 32-bit pbdttcan be used for DMA data transfers to the
Zyng FPGA. It is suitable for short transfers onirol operations

Infiniband — a high-performance (costly) NI
IP — Intellectual Property system (either hardwareoftware)

HP — High-Performance Port: an ARM AXI 64-bit ptrat can be used for DMA data transfers to the
Zyngq FPGA. It is suitable when there is no neekleéep coherency with the memory hi-
erarchy on the processor side

Mercurium — the OmpSs compiler

Nanos++ -- the OmpSs runtime

MGT — Multi-Gigabit Transceiver

MPI — Message Passing Interface: library for wgtportable message-passing programs
PL — Programmable Logic: the purely FPGA part &oC like ZYNQ

PS — Processing System: the hardwired IPs of a FRy®Ad SoC like ZYNQ

NI — Network Interface

OpenCL - Khronos group programming model for hefjen@ous architectures

OmpSs — Extension of OpenMP programming model pps task dataflow programming
OmpSs@FPGA — FPGA extension of OmpSs

OmpSs@Cluster — Cluster extension of OmpSs

PHY — the physical implementation of the networleiface

QSPI — Quad Serial Peripheral Interface

RDMA — Remote DMA: a DMA that can work from one cpuater to another computer
SoC - System on Chip

USB OTG — Universal Serial Bus On The Go

XSMLL - (pronounced X-SMALL) eXtended Shared-Memdagw-Level API (see D7.1)
X-Thread — a self-contained thread that can beiloliged across boards through XSMLL
ZYNQ -- A System-on-Chip commercialized by XILINMhich includes FPGA and CPUs

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 4 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Executive summary

This document describes the programming model sidea proposed for programming the AXIOM
boards with OmpSs, the design of the support ferRRGA devices, the distributed cluster environ-
ment, and the communication layer.

Following the existing OmpSs support for CUDA ande@CL, in the AXIOM project we map the
OmpSstarget device extensions onto heterogeneous nodes includingesatars based on FPGAs.
Code annotated with thtarget device (fpga) andtask directives will be automatically offloaded by
the Mercurium compiler onto separate files, and mited with the FPGA tools to build the accelera-
tor for the FPGA (i.e.,. on the programmable Iquget of a System-on-Chip as the Zynq or in general
on the AXIOM-fpga). These tasks will be spawnedthy Nanos++ runtime system to run on the
FPGA and or on the cores (i.e., the ARM-A9 coresdse of the Zyng SoC or in general on the AX-
IOM-cores). Nanos++ will use a custom DMA libramepented in this deliverable to take care of data
transfers between the host memory and the FPGAe®vi

The support for distributed cluster environmentsased on the Nanos++ runtime system and its con-
nection to the communication layer, through spea@fmmunications software. In this project we are
considering the use of common tools, like MPI or$et, and also implementing our specific ap-
proach based on the XSMLL infrastructure (cf. defable D7.1).

An initial evaluation of the low level communicationechanisms to transfer data to and from the
FPGA devices (i.e., to/from the AXIOM acceleratassghown. These results will be used during the
implementation of the support for the OmpSs extarsfor FPGAs to decide the specific mechanism
to use in each situation.

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 5 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

1 Introduction

1.1 Document structure
This deliverable is organized as follows

e Section 2 describes the programming model exteagiooposed for programming the AXI-
OM boards with OmpSs.

e Section 3 describes the runtime support planeddistributed environments based on the
connection of several AXIOM boards.

» Section 4 presents the design of the communicédier used to connect AXIOM boards and
build the distributed system.

» Section 5 shows the evaluation of the low-level RRfata transfer mechanisms to support
OmpSs.

1.2 Relation to other deliverables

This document completes the description of the gamogning model extensions and their support,
presented in the document “MS41 — Definition of Bregramming Model Extensions”, and designed
to run on the AXIOM platform presented in the doemin“D6.1 — Technical specifications of AXI-
OM board”.

1.3 Tasks involved in this deliverable
This deliverable is the result of the work develbpetasks:

* T4.1: Requirement definition for the programmingdabextensions
e T4.2: OmpSs programming model extensions

e T5.3: Parallel programming library

e T6.5: System interconnect

2 Programming Model Extensions

In this section, we describe the OmpSs Programiviodel [3], the extensions planned for OmpSs to
spawn tasks in the FPGA-device (an AXIOM accelejatand the extensions needed to support the
cluster version. This support has been designedparithlly developed during the first year of the
AXIOM project.

2.1 Introduction to the OmpSs Programming Model

The OmpSs Programming Model supports the executioheterogeneous tasks written both in
OpenCL and CUDA, and in the distributed clustesiar. Both OpenCL and CUDA options require
the programmer to provide the OpenCL or CUDA cauohel use théarget clauses to move the data to
the associated accelerator. In the AXIOM projedt,ane using the same technique to spawn tasks to
the FPGA, provided there is a compiler to genetfaee-PGAbitstream implementing the task, from
C/C++ code, or there is an existibigstream available with a known interface to access daba.ei-
Deliverable numberD4.1

Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 6 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

ecuting tasks in the cluster version, the programmeeds to specify the task as plain C/C++ code.
Execution on the OmpSs@cluster version automatialbws the runtime system to spawn tasks
remotely.

The programming model will allow to parallelize dipgtions on the AXIOM cluster, and spawn
tasks on the FPGAs available on each board. Usmg$3@cluster with FPGAs support, program-
mers will be able to express two levels of pariitel

A first level of parallelism will be targeted toalAXIOM-cores, i.e. the cores that are availableten
AXIOM-board (e.g., the ARM-A9 cores in the caseaoZynq SoC, c.f. Deliverable D6.1). Tasks at
this level will be spread across the AXIOM boaras jf they would be executed on an SMP machine
(see Sections 3 and 4 for the distributed clustppart).

A second level of task parallelism will be expresskrough the OmpSs extensions targeting the
FPGAs (see below, Section 2.2).

The OmpSs Programming Model is based on two mampooents and some additional tools:

* The Mercurium compiler [8] takes the source codsecified by the programmer and un-
derstands the OmpSs directives to transform the t@dun on heterogeneous platforms, in-
cluding OpenCL and CUDA accelerators. In this prgjéhe compiler will be extended to al-
so support FPGA-based accelerators.

* The Nanos++ runtime system, which is the respoasimanage and schedule parallel tasks,
respecting their dependences, transferring the degéaled to/from the accelerators, when
needed and the lower-level interactions (cf. Secsp

* Additionally, OmpSs can use the Extrae tool to gateeexecution traces that can be later
visualized with the Paraver tool, and analyze thelavior. Both Extrae and Paraver are also
developed at BSC. This complements the evaluatiols developed in WP7 (see Deliverable
D7.1).

Figure 1 shows the existing syntax used in theetaagd task directives in OmpSs. Task directive
clauses act as follows:

* in, out, andinout clauses allow the specification of the input, atitpnly, and input/output
ranges of data that are to be used by the task. way, the Nanos++ runtime system takes
care to manage the task dependences before anéyadtriting this task.

» concurrent andcommutative allow the specification of variants fout dependences fanout
data. Concurrent means that data is accessed mekicit synchronization inside the task,
so that the runtime system can exploit tasks ialfgr Commutative indicates that the tasks
can be executed sequentially, but in any ordersfplysdifferent from the creation order).

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 7 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496

Call:

ICT-01-2014: Smart Cyber-Physical Systems

#pragma omp target device ({ smp | opencl | cuda }) \
[implements (function_name)] [copy deps | no_copy_deps]\
[copy_in (array_spec,...)][copy_ou t(...)][copy_inout(...)] \
[ndrange (dim, ...)] [shmem(...)] [file(name)] [name(name)]
#pragma omp task [in (...)] [out (...)] [inout (...)] [concurrent (...)] [commutative (...)] \
[priority (P)][label (name)]\
[shared(...)][private(...)][firstprivate(...)][def ault(...)] \
[untied][final (expression)][if (expression)]
{code block or function prototype}

Figure 1 — OmpSs target and task directives

priority(P) is used to specify the importance of the tasls & hint to the scheduler, that may
try to execute higher priority (P) tasks before éowpriority tasks, always respecting the de-
pendences between them.

label (name) provides a name for the task, specifically foritisgrumentation tools.

shared, private, firstprivate, Default are clauses specifying the data shaonghie listed vari-
ables. They are compatible with the same claus@pénMP.

untied means that the task can change processor afiekifdpin ataskwait. By default tasks
are tied, and they execute always in the same gsocafter aaskwait.

final (expression) indicates that this task will not create innekgas

if(expression) indicates if the task can be deferred or nothédf éxpression evaluates to True,
the task will be a regular task. If the express@waluates to False, the task will be created and
executed immediately by the same thread.

Target directive clauses act as follows:

device specifies the specific device this task is to mm “smp” means the host cores,
“opencl” indicates an OpenCL-capable device, andi&t, a CUDA-capable device.
implements(function-name) indicates that this task is equivalent to the fiomcindicated, pos-
sibly for a different device, and the runtime syste free to schedule either one in the avail-
able device.

copy_deps / no_copy_deps, indicate if the dependences listed in the taséctive should also
be kept consistent / or not with the accelerator.

copy_in, copy_out, copy_inout list additional data that should be kept conststéth the ac-
celerator.

ndrange, shmem, file, and name clauses providetiaoai arguments for OpenCL and
CUDA target tasks, which are not relevant for AXIOM

Tasks can be associated to a code block or toaidan In the case of inline code annotations,gask
targeting the host cores are outlined as new fonstby the Mercurium compiler and spawned as
tasks to be executed on the SMP host. Tasks taggite FPGA will be outlined by Mercurium onto
separate files, and compiled through the Xilinx &e HLS in order to generate VHDL, and later
through the Vivado tool to generate the bitstreamtie FPGA [11]. Invoking tasks on the FPGA will

be d

one by the Nanos++ runtime system by sendimglata needed, executing the FPGA device, and

getting the resulting data back to the host memory.

In th

e case of function interfaces annotated vithtarget device (fpga) directive, the invokations

such functions will be done in the FPGA device ggite same parameter passing.

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 8 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

2.2 OmpSs extensions for the FPGAS

OmpSs needs to be extended to support the Zyngngtlighe FPGA selected in the AXIOM project.
The extensions to provide support for these chmfgee Mercurium compiler are:

* To incorporate a new target device named “fpga“adidlition to the currerdmp, cuda
andopencl devices, the “fpga” device will cause the Mercaricompiler to understand
that the function annotated is to be compiled it Xilinx Vivado HLS compiler, for
the FPGA, in order to generate the bitstream.

With this extension, the compiler will generate e€ddr the runtime system specifying the tasks that
should be run in the FPGA device. The Nanos++ mmsystem will also need to be extended, in the
following way:

* Support to spawn tasks in the FPGA device.
» Support for the target clauses related to datafieast

» Data-copy clauses (copy_in, copy_out, copy_indiat):the FPGA target, they will
trigger the data transfer of the data specifiefildol the FPGA device.

» Dependence-copy clauses (copy_deps, no_copy_dept)e FPGA target, they will
indicate if, additionally, the data dependence<ifipd in the associated task should
be transferred or not, with the directionality asated in the dependence clauses.

e Support for data transfers to/from the FPGA. Thad$a+ runtime will invoke the ser-
vices of the DMA library developed to transfer datshe FPGA environment.

* Include the FPGA device in the support of iimplements clause in order to allow several
implementations of tasks to be scheduled in thegssors/devices available.

The DMA library interface [6] provides the meansaltocate buffers to exchange data between the
Linux kernel and the FPGA hardware. In the curpototype, when the FPGA has been given the
data to operate with, the IP kernel is automatjcstfhrted, and after finishing, the results camezeal
from it. The current version of the interface i®wh in the following tables. It may still changeths
work on Nanos++ and the Linux driver proceeds spgloject.

Method parameter Description

Initializes the DMA userspace library and driver.
xdma_status xdmaQpen (void);

Method parameter Description

Cleans up the DMA userspace library and driver.
xdma_status xdmaCl ose (void);

Method parameter Description
uint32_t * num_devices [out] Number of FPGA-devices present in the syste
Returns the number of devices present in the system

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 9 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

xdma_status xdnmaGet NunDevi ces (uint32_t * num devices);

uint32_t entries [in] Number of FPGA-device handles that can beestan the ‘devices’
array

xdma_device * devices [out] Array to hold the deviandles, at least of sieetries

uint32_t * num_devices [out] Actual number of device handles returned

Returns the device handles for the devices présehée system.

xdma_status xdmaGet Devices (uint32_t entries, xdnma_device * devices,
uint32_t * numdevices);

Method parameter Description
xdma_device device [in] FPGA-device that will be connected to the ngwallocated channel
xdma_dir direction [in] Direction of the channXIMA_TO_DEVICE, XDMA_FROM_DEVICE)

xdma_channel_flags flags [in] Channel flags (currently unused)
xdma_channel * channel [out] Handle to the newlgrogd channel

Open a device channel. Each device can have oneanp 1 output channels used to send/receive data.

xdma_st atus xdmaQpenChannel (xdme_devi ce device, xdma_dir direction,
xdma_channel _flags flags, xdma_channel * channel);

Method parameter Description

xdma_channel * channel [in,out] DMA channel to be closed

Closes a DMA channel and releases its resources.
xdma_status xdmad oseChannel (xdma_channel * channel);

xdma_buf_handle * handle [out] DMA buffer handle
uint32_t len [in] Buffer length in bytes

Allocates a buffer in kernel space to support datasfers to a DMA device. The buffer will be pidne

xdma_status xdmeAl | ocat eKernel Buf fer (uint8_t ** buffer,
xdma_buf _handl e handle, uint32_t |en);

void * buffer [in] Address of the buffer to be freed
xdma_buf_handle handle [in] Buffer handle to bedre

Free a pinned buffer allocated in kernel spaceusnmlap the region from user space.

xdma_status xdmaFreeKernel Buffer (void * buffer, xdma_buf_handl e handl e);

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 10 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Method parameter Description
xdma_buf_handle buffer [in] Buffer handle
uint32_t len [in] Buffer length
uint32_t offset [in] Transfer offset
xdma_xfer_mode mode [in] Transfer mode (XDMA_SYNDQMA ASYNC)
xdma_device device [in] DMA device to be used to transfer data
xdma_channel channel [in] DMA channel to use

xdma_transfer_handle * handle [out] Handle identifying the DMA transfer, used WXDMA_ ASYNC
Submits a pinned buffer allocated in kernel spacafDMA transfer.

xdma_status xdmaSubm t KBuf f er (xdma_buf handl e buffer, uint32_r |en,
uint32_t offset, xdma_xfer_npde node,
xdnme_devi ce devi ce, xdma_channel channel,
xdma_transfer_handl e * transfer);

Method parameter Description

void * buffer [in] Buffer to be transferred

uint32_t len [in] Buffer length

xdma_xfer_mode mode [in] Transfer mode (XDMA_SYNC, XDMA_ASYNC)

xdma_device device [in] DMA device to be used smgfer data

xdma_channel channel [in] DMA channel to use

xdma_transfer_handle * handle [out] Handle idemtifythe DMA transfer, used with XDMA_ASYNC

Submits a user allocated buffer (i.e. using maltod)e transferred through DMA.

xdma_status xdmaSubnitBuffer (void * buffer, uint32_r |en, xdnma_xfer_node node,
xdma_devi ce devi ce, xdma_channel channel,
xdma_transfer_handl e * transfer);

Method parameter Description

xdma_transfer_handle handle [in] DMA transfer handle to be checked
Tests the status of a DMA transfer (finished, pegdor in error).
xdma_status xdmaTest Transfer (xdnma_transfer_handl e handl e);

Method parameter Description

xdma_transfer_handle handle [in] DMA transfer handle to wait for
Waits for a transfer to finish (finished, pending,in error).
xdma_status xdmaWit Transfer (xdma_transfer _handl e handl e);

Method parameter Description

xdma_transfer_handle handle [in,out] DMA transfer handle to be released
Releases the data structures associated with a DDahafer.
xdma_status xdnaRel easeTransfer (xdma_transfer_handl e * handl e);

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 11 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

2.3 Support for OmpSs@cluster

The OmpSs@Cluster [2] infrastructure uses a comeation layer to launch tasks in remote nodes.
Task descriptors and data travel on the commupicddiyer. In our current implementation, this layer
is GASNet [1], usually running on top of MPI [4]h& different alternatives to implement this ap-
proach that are currently under study in our ptogge presented in Section 3. The underlying com-
munications layer is presented in Section 4.

3 Support for distributed environments

This Section provides a brief explanation of thppmurt needed to integrate the OmpSs programming
model into the networking support provided by the€l@M boards.

Note: Further details will be specified in Delivela D5.2 (due at month m18 in the project, i.e. 6
months after this deliverable), where we will ddselin more detail the aspects related to the remot
memory access.

The main goal that drives the choices described below is to pi@an efficient and possibly light-
weight implementation of the infrastructure thdbws OmpSs to use the AXIOM networking infra-
structure.Given the complexity of the framework, vealized that there are a number of possible
ways for implementing this kind of support, eacle saquiring integration at different levels of the
OmpSs toolchain. For this reason, during the ptajecare going to explore, implement and evaluate
different options, in order to choose the ones bt fit the project objectives. The options we ar
exploring (described in more detail below) are énthie option numbers are the same depicted in Fig-
ure 2):

* Integration with OmpSs@cluster as a GASNet conohsed directly on the FORTH network
interface (option 1).

* Integration with OmpSs@cluster as a GASNet corfaased on XSMLL [5][7] (option 2a);

* Integration with OmpSs as a Nanos++ [8] plugin dam@e XSMLL [5][7] (option 2b);

* Integration directly below Mercurium [8] (option;3)

Please note that the outcome of the evaluatidkefyInot to provide a single "winner", becauseheac
solution has its advantages and drawbacks. As Weliatuss below, for example, we expect option 1
to be a pure software implementation over the FOR&tvork interface (potentially slower but with

lower FPGA requirements), whereas option 2b wketadvantage of the XSMLL dataflow approach
[5][7] (thus potentially faster but with higher FRGequirements).

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 12 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

OmpSs
code
v
Mercurium
1
1 v
'3
| Nanos++ > e
| code
' XSMLL cluster CUDA| FPGA
Y
GASNet
xsm code 2b i XSMLLFORTH MPI (UDP
2a

XSMLL

FORTH MP+RDMA

Figure 2— Architectural view related to the supportof distributed environments.

Figure 2 shows an architectural view of the variopgons under exploration. In particular, we high-
light the following main architectural components:

The Mercurium source to source compiler;

The Nanos++ Runtime library;

A set of Nanos++ "targets". The interesting onesttics Section are the "cluster” target and
the new "XSMLL" target developed in the contextlod AXIOM Project (see later);

The GASNet layer used for the implementation of“ttiaster” target;

The GASNet "conduits”, which are basically plugthat enable GASNet to run on different
transport (network) layers. Please note in padictMPl and UDP, which are the ones on
which OmpSs@cluster typically works, and in additio these, please note the new XSMLL
and FORTH conduits in development in the contexhefAXIOM Project (see later);

The XSMLL Layer, providing fine-grained task datai;

The FORTH Message Passing / RDMA networking supgorplemented in FPGA and
available to the ARM cores of the Xilinx Zynq micantroller used in the AXIOM boards.

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 13 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

We can now describe shortly the options we areideriag in the AXIOM Project. To ease the un-
derstanding of the reader, we are presenting themvierse order, because in this way each step will
be "incremental” to the previous one.

Option 1: GASNet conduit based directly on the AXIOM network

interface (FORTH)

The straightforward way of integrating OmpSs witle tAXIOM-link interconnect by FORTH is to
operate at the level of OmpSs@cluster, providirgp &alled "conduit” of GASNet. A "conduit" of
GASNet is a plugin of GASNet that allows the imp&ntation of the full GASNet API on top of a
"transport layer".

Currently, there are various transport layers taat be used, starting from the simple UDP layer, to
MPI, Infiniband and others.

The approach here is to re-implement the GASNetigivAP| using the Linux Kernel Driver in de-
velopment in Task 5.1. The implementation will ted@dvantage of the RDMA support provided by
the FORTH for the AXIOM-link interconnect in a waimilar to what done in the Infiniband conduit.

Option 2a: GASNet conduit based on XSMLL

This option is similar to Option 1, but it tries tse the XSMLL [5][7] Dataflow layer to provide a
proper transport layer for the GASNet conduit.

After an initial implementation prototype done dre tCOTSon simulator [9][10] was developed as
part of the WP7 activities (see deliverable D7nlg,foresee the fact that this option will probatbyt

be the most efficient one. The reason for thigiated to the semantic abstractions which are ptese
at the various levels.

In particular, both the Nanos++ plugin interfacel #me XSMLL layers exposes a "task" semantic. On
the other hand, the OmpSs@Ciluster has the rotaneform the Nanos++ plugin "task” semantic into
something more manageable by a network interfacep$3@Cluster does that using the GASNet
layer, which exports an "active message" semaatihe upper layer. OmpSs@cluster, in practice,
transforms the "task" semantic into a "active mgesaemantic, leaving the rest to GASNet.

At the GASNet layer, the "active message" semajorted at the top is then managed internally,
and then implemented using simpler conduit int&$aclhe conduit interfaces are using a sort of
message exchanges using asynchronous messagexgdrsigichronous message receive functionali-

ty.

As we can see, the initial "task" semantic, avédlatt the Nanos++ plugin level, has been transfdrme
into a message passing approach, available atA&Nét conduit level. To help this, partners UNISI
and EVI are exploring the possibility to add a naggspassing extension to XSMLL (part of this
work is developed in WP5). The appropriate grartyland operations are under exploration.

For the above reasons, we are not confident thebpition will provide the best results, but was-co
sidered since it was a possibility apparently reabte and simple.

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 14 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Option 2b: Nanos++ plugin based on XSMLL

Given the limitations of option 2a, we decided valaate option 2b, which tries to avoid the sentanti
incompatibility between the various layers.

In particular, the idea is to develop an additiguiabin to Nanos++, which will allow the direct gga
of the XSMLL layer. This approach is for sure thestpromising one, since the semantic exported
by XSMLL and required by Nanos++ are somehow singlad based on a "task" semantic.

Moreover, the XSMLL interface will provide the rime support allowing the distribution of X-
Threads on the various nodes allowing the possikiti early test the results using the COTSon
[9][10] simulator.

Afterwards, the possibility to optimize the implemtation of XSMLL in FPGA is going to provide a
performance boost to the implementation.

We expect to implement an initial version of thistion during the second year of the project. This
initial version will support a subset of the conosts available on the OmpSs programming model
(e.g., the first implementation will be without thtaskwait" construct).

Option 3: Mercurium integration with XSMLL

Another option, which could be available, stemgarfrthe idea that the XSMLL execution model
could be directly integrated into Mercurium, in aymo provide direct XSMLL code generation of
OmpSs code.

If on one hand this option seems to provide areia®ed performance thanks to the direct usage of the
XSMLL implementation (which can be optimized in FRGon the other hand it needs some special
care in the integration with the other "targets'QuhpSs (in particular the cluster and FPGA tarigets
Nanos++).

Moreover, additional study needs to be done inrotaesupport data dependencies with the richness
of options currently provided by the OmpSs framdwibranks to the Nanos++ implementation. In
particular, task dependencies in OmpSs can be figukaising complex dependency constraints,
whereas the XSMLL interface offers a method basedaunters; an implementation of option 3 will
have the (non-straightforward) need to map thosemethods together.

For these reasons, after a first evaluation we ptarto implement option 3 during the AXIOM Pro-
ject.

4 Communication layer

The AXIOM communication layer is responsible foe ttlata transmission among all available nodes
in the network. It consists of a software librangit allows the host CPU of each node to send and re
ceive control and RDMA messages via its Networletiatce (NI) module. The tables below summa-
rize the current version of the NI software funotrototypes. They may still change as the work on
the interface and Linux driver proceeds in the gxbj

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 15 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

uint8_t srcNode The local node Id that will send raw data
uint8_t dstNode The remote node id that will receive the raw data
uint32_tdata Data to be sent

Sends raw data to a remote node. Returns a unique positive message id on success, -1 otherwise
uint8 t sendRawData (uint8 t srcNode, uint8 t dstNode, uint32 t data);

uint8_t srcNode The local node Id that sends data to a remote node
uint8_t dstNode The remote node’s id where data will be stored

uint32_t *ISrcAddr The local address from where data will be transmitted
unit32_t *RdstAddr The remote address where transmitted data will be stored
uintl6_t payloadSize Size of data to be sent in words

Stores data to a remote node’s memory. Returns a unique positive message id on success, -1 otherwise

uint8 t RDMAwrite (uint8 t srcNode, uint8 t dstNode, uint32 t *1SrcAddr, uint32 t
*rDstAddr, unitl6 t payloadSize);

uint8_t srcNode The local node Id that requests data from a remote node
uint8_t dstNode The remote node id that will send the requested data
uint32_t *rSrcAddr The remote address from where data will be fetched
unit32_t *IDstAddr The local address where fetched data will be stored
uint16_t payloadSize Size of data to be fetched in words

Requests data from a remote node to be stored locally. Returns a unique positive message id on success, -1 otherwise

uint8 t RDMAreq (uint8 t srcNode, uint8 t dstNode, uint32 t *rSrcAddr, uint32 t
*1DstAddr, unitl6 t payloadSize);

Reads the NI status register.
uint32 t readNIStatusReg();

uint8_t msgld The RDMA request id that is pending data
Reads the HW counter value associated with a specific RDMA request id.
uint32 t readNIHWCounter (unit8 t msgId) ;

uint8_t regMask The register mask to be used for the configuration.
Sets the control registers for enabling local transmission ACKs and/or the PHY loopback mode configuration.
void setNIRegister (unit8 t regMask);

uint8_t nodeld The Id assigned to this node.
Sets the id of a local node.
void setNodeId(unit8 t nodeld);

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 16 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Returns the local node id.
unit8 t nodeId getNodeId();

uint8_t dstNode Remote node id to setup its routing table

uint32_t *nodeRoutingTable Routing table to be sent

Sets the routing table of a particular node.

void setRoutingTable (unit8 t dstNode,uint32 t *nodeRoutingTable) ;

uint8_t dstNode Remote node id to read its routing table
Returns the routing table of a node.
uint32 t *nodeRoutingTable getRoutingTable (unit8 t dstNode);

uint8_t dstNode Remote node id to update its routing table

uint16_t nodeldToUpdate Entry to update within the routing table

Updates the routing table of a node for a particular entry.

void updateRoutingTable (unit8 t dstNode, unitl6é t nodelIdToUpdate) ;

uint8_t dstNode Remote node id to remove entry from its routing table
uint32_t *nodeldToRemove Node id that no longer belongs to the routing table of dstNode
Invalidates an entry of the dstNode routing table.

void deleteNodeFromRoutingTable (unit8 t dstNode,uint8_ t nodeIdToRemove) ;

uint8_tifld Online interface Id where the identification message will be sent
Sends an identification packet to the neighbor node connected to an IF, and receivesiits id.
uint8 t neighborId identifyNeighborNode (unit8 t ifId);

Transmits the node’s neighbor — interface pairs to the “master node”.
void reportNeighbors () ;

Figure 3 illustrates the NI structure and how tbéveare library can be used for its configuration
from the host CPU. During network initializationnatwork topology algorithm is executed on each
node to identify its neighbor ones. Within each enaithe topology algorithm will use the functions
setNodel d, identifyNeighbotNode andreportNeighbors, to discover its neighbors and report them to
the master network node. The latter will generatshenode’s routing table (used by the router module
during packet relaying if required), which can lmafigured by the host CPU via the NI software li-
brary &etRoutingTable). We should note that in case a node is addeddved to the network, the NI
software library provides methodde(eteNodeFromRoutingTable, updateRoutingTable) to update ac-

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 17 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

cordingly the NI routing table / remove completalyode if needed. Moreover, helper functiams (
deld, getRoutingTable), can provide debugging capabilities.

host CPU

NI software interface

f

status
registers

2
(8]
O
T
g
c NI internal infrastructure
4
S :
2 t routing table
@ i
zZ
router «—]
Rx| Tx v

Figure 3 - Overview of the NI structure and its cofiguration from the host CPU via the software inteface.

The NI employs a set of memory-mapped status anttaaegisters. The status register is directly
accessible by the NI librarydadNISatusReg) and the host CPU can read it to monitor varioas p
rameters, such as the DMA engine state (idle, hilsg)messages queues fill status (empty, not emp-
ty, near full, etc), the PHY link state (connectddwn), as well as the progress of on-going RDMA
requests / writesréadNIHWCounter). The control registers are also directly accéssily the NI
software éetNIRegister); the host CPU can write them to configure NI pagters, such as the node
id, the PHY link loopback mode, and successfuldnaission notifications.

Finally, the NI employs a set of memory-mapped haré queues, accessible by the NI software li-
brary. The CPU can use these queues to push asyicis message transmissions, such as RDMA
requests / writesRDMAreq, RDMAwrite), and raw data transmissiorser{dRawData). Also, it can
check asynchronously for any received messagegraceed to further processing if required.

5 Preliminary evaluations

In this section, we present some preliminary resthlat will be used in the AXIOM project to select
proper implementation options for OmpSs to useZymg FPGA. Figure 4 presents the basic diagram
of the Zynqg chip with the main blocks, and the whgy are interconnected. The central part of the
figure is the Zyng chip. It is split in two mainnt& at the top part, the Processing System (R}, ¢
tains the hardwired Cortex A9 processors and a mgouantroller. At the bottom, the Programmable
Logic (PL) contains the FPGA

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 18 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Memories represented at the sides of Figure 4harentin host memory, or PS RAM (Host), on the
left side, which is directly accessible from the é&es, and it is the one that Linux manages, @ith
capacity of 1GByte; and the FPGA memory, or PL RAWGA), on the right side, which is directly
accessible from the FPGA, and its capacity is afsbGByte. Additionally, the PL-BRAM memory
(shown inside the AXIOM accelerator IP) is the tgliblock RAM memory available inside FPGA
chips. It is smaller in size, ranging from 3.3MByt@n the 7015 chip) to 19.3MBytes (on the 7045
chip).

In this environment, programmers locate their aggpidon data in the PS RAM (Host). From there data
can be transferred to the PL-RAM (FPGA) when thewamh of data is significant, and also when it is
known to be reused often. And for smaller chunkdaif (up to a few Mbytes), it is enough to move
it directly to the PL-BRAM on the specific FPGA des (AXIOM accelerator IP in the figure).

Processing Coftrolor;

System

AMB Interconnect AMB Interconnect

P S Snoop P L

Control

RAM Unit RAM

(Host) (FPGA)
AMB Interconnect AMB Interconnect
GeneraAl)glggt:lsse (GP) (DMA ’ High P%faorg:::e (HP)
._Engine
Programmable Logic >
S

Figure 4 — Basic structure of the Xilinx Zynq chipand the connectivity
of the ARM cores (PS) with the FPGA logic (PL)

In particular, we show measurements of the follgndata access methods:

« The data transfer communication connection betwkerProgrammable Logic and the Host
CPU in the Zyngq FPGAs (path from the PS RAM of lost, to the PL BRAM on an acceler-
ator in Figure 4)

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 19 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

* The data transfer type: synchronous or asynchroaptise Nanos++ FPGA device dependent
layer

» Performance estimation and evaluation of hardwaits/are decisions based on the number
of accelerators and size, and the heterogeneocstexe

» Evaluation of the performance of the data trandsfienm the PS RAM of the host to the PL
RAM of the FPGA, and then to the PL BRAM on thedetator (see Figure 4).

5.1 PS RAMto PL BRAM analysis

In the Zynq boards, the type of memory transfantplement is important, as it will influence the-de
sign and generation of the hardware acceleratdog tan in the FPGA, and to create the device tree
of the Linux operating system. This is necessagabse the hardware accelerator implementations
have to include on the FPGA the IPs needed to eldaha transfers from the RAM of the Host to the
BRAMs of the FPGA, and this IP of the DMA engineoshl be recognized by the Linux operating
system at boot time.

This evaluation will help decide the best FPGA deuio perform memory transfers that can be de-
veloped as a part of the FPGA device support irNdueos++ runtime.

Figure 5 shows the accumulated memory bandwidtieaett when transferring a certain amount of
32-bit elements using the seven possible portsdeivthe PL and the PS systems: 1 Accelerator Co-
herence Port (ACP), 4 High Performance (HP) pansl 2 General Purpose (GP) Ports (see Figure
4). The experiment is done in standalone modeattda single ARM core driving the transfers. The
accumulated memory bandwidth is shown for input 281 to PL BRAM) and output (PL BRAM

to PS RAM) memory transfers. The total accumulatednory bandwidth is of about 1.5GB/s.

Output: ACP, HP, GP Interfaces Input. ACP, HP, GP Interfaces

7 devices (1xACP, 4xHP, 2xGP) 7 devices (1XACP, 4xHP, 2xGP)

1600
1400

1400
1200 1200
1000 1000
800 800
600 600
a0 I 200 I
0 _____ . I zoz SEE—— | . I I

LT S TP R N M
~ ‘o'LQ o © SN) o
Ry "égé,g;@;»\o; N@@&b@gfﬁ&wé\

1600

MB/s
MB/s

#32-bit elements #32-hit elements

Figure 5 - Accumulated memory bandwidth (in Mbytes$) using up to seven PS to PL connection ports
(standalone execution, 1 ARM core).

Although the data rate reached in these experingmiald be enough to fully support communica-
tions of 3-6 Gbit/s on the AXIOM-link connectiome specific IP cores used to implement the NI of
the communication layer may limit the final comnzation rate achieved.

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 20 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Figure 6 and Figure 7 show the separated memorgviadth for each of the connection ports. The
only ACP connection is shown, and in the case eHF and GP interfaces, with up to 4 and 2 con-
nections respectively. Table 1 shows the unitady aygregated bandwidth for each of the port types,
when working on a single direction. The peak mentmaydwidth is not achieved for any connection,
as shown in the figures.

The input memory bandwidth (Figure 6) for the AGection is worse than that achieved by the
other connections. In this case, ACP maintainscitieerence with the SMP. The output memory
bandwidth (Figure 7) on the ACP connection is samib 2 GP connections running in parallel and
slightly better than two non-coherent HP connection

Table 1 — Peak, single direction, bandwidth achievefibr each type of communication port in the Zynq FFSA
running at 100 Mhz. (in MBytes/s)

Port ACP HP GP

Peak bandwidth (unitary) 381 MB/s 381 MB/s 381 MB/s

Peak bandwidth (aggregated) 381 MB/s (1 port) | 1525 MB/s (4 ports) 762 MB/s (2 ports

Input Bandwidth - Separated

1000
900
800
700
m1HP
&0 w2HP
_— 3HP
@ w4 HP
= w0 m1ACP
1GP
300 m2GP

[=]

2 512 2048 8192 32768 131072 524288

200
1miil"l
8 32 128
4 16 64 256 1024 4096 16384 65536 262144 1048576

#32-bitelements

Figure 6 — Input (PS to PL) memory bandwidth for eab of the PL to PS connections.

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 21 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Output Bandwidth - Separated

Grant Agreement Numbe645496
m1HP
m2HP
3HP
E4HP
m1ACP
1GP
‘ ‘ ‘ ‘ ‘ | ‘ ‘ i

Call: ICT-01-2014: Smart Cyber-Physical Systems
8102 32768 131072 524288

1024 4096 16384 65536 262144 1048576

1000
900 -

800 -

500 -

700 -

600 -

40.0 !

300

20

ol

0-— u-ihli.liil
8 32 128 512 2048
4 16 64 256

MB/s

o

[=]

----- Ll
2
1

#32-bitelements

Figure 7 — Output (PL to PS) memory bandwidth for egh of the PL to PS connections.

Therefore, the ACP does not seem to be the be&techased on the memory transfer bandwidth, but
it keeps the coherence of the memory cache wittHthst cores of the Zyng system, which is really
important for heterogeneous parallel executions.déded to evaluate if having more than one de-
vice connected to the ACP port may help gettingebbgierformance. Figure 8 (input) and Figure 9
(output) show the input and output memory bandwadthieved using the ACP connection with:

* 1 FPGA device (i.e., one AXIOM accelerator on tHeGA), and 1 thread generating data
(blue bar)

* 2 FPGA devices, and 1 thread generating data @8d b

* 2 FPGA devices, and 2 threads generating data(yédiar)

Figures also show the peak performance that caachieved with 1 device (green curve) and 2 de-
vices (brown curve). We have done the experimentiivg the accelerator frequency since this also
influences the memory bandwidth performance.

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 22 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

16MB Input: ACP

4500
4000 -
3500
3000 - = 1 device
2500 e ? devices
E 2000 Ethre.ads
—— 1 device max
Ak — 2 devices max
1000 -
o a .I 444 || J ‘
DIJJ
66 71 100 111 125 142 166 200 250
Freq(MHz})

Figure 8 — Input (PS to PL) memory bandwidth using lor 2 ACP-connected devices, and 1 or 2 threads.

On one hand, results are really promising sinceavedouble the DMA memory transfer bandwidth
using 2 devices (with 1 or 2 threads) in the cdseput memory transfers. This is a significant im-
provement if we look at the 100MHz frequency, butsi even more significant the bandwidth
achieved when increasing the frequency. On ther d¢thed, the output memory bandwidth achieved
is doubled also when using 2 threads, but not ftirdad. These results show that the ACP connec-
tion can achieve good memory bandwidth, keepingctiteerence of the memories, if we use more
than one device and more than one thread to usecteterators connected to the ACP.

16MB Output: ACP

4500
4000
3500
3000 = 1 device
2500 2 devices
vl
% 2000 Ethre_alds
1 device max
2004 — 2 devices max
1000
mif[llllll
1 76 90 100 111 125 142 166 200 250
Freq(MHz)

Figure 9— Output (PL to PS) memory bandwidth using JIor 2 ACP-connected devices, and 1 or 2 threads.

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 23 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

5.2 Asynchronous vs Synchronous memory transfers

Another aspect that has been evaluated is the udagachronous or asynchronous memory transfers
to improve the application performance. Figure hovss the performance comparison in GFLOPS
for a Matrix Multiply (1024x1024) using a 128x128M accelerator, at different frequencies, using
synchronous and asynchronous memory transfers. GHeOPS are calculated by dividing the
amount of floating point operations (10p4dy the time taken by the execution of the matrix
multiplication. In the experiment with asynchrondusnsfers, the benchmark computes on a block,
while there are transfers for other blocks in pesgt thus overlapping communication of matrix
blocks with computation on other blocks alreadyngfared. In the synchronous version all data
transfers have a DMA wait operation before proasgdi

Results show that (1) frequency helps to improve MM application performance, and (2)
asynchronous memory transfers are worthy to beemehted inside the Nanos++ runtime.

5.3 Master/worker thread design in the Nanos++ runtime

Currently, OmpSs uses a schema with one mastexdlaed one helper thread per device. However,
in a Zynq system, with only 2 cores in the SMPs tt&dn mean a significant impact due to context
switches (three threads fighting to obtain 1 oftine SMP cores). We have evaluated the current be-
havior of this case, and also two more: (1) on@drelhread is in charge of more than one FPGA ac-
celerator, and (2) one SMP thread (worker or madtsals with SMP and accelerator executions.

W Sync transfers
B Async transfers
0
100 166 200

Freq (MHz)

GFLOPS
N W s o

[

Figure 10— Performance obtained from a Tiled MatrixMultiplication benchmark
(matrix size 1024x1024, tile size 128x128) in GFLOPS

Figure 11 shows the performance results of thogeethituations using a prototype of the Nanos++
runtime. The evaluation is done for a MxM of 102d24, using 128x128 blocks. We also show per-
formance results for the following cases:

- 1 acc: using just one accelerator
- 2 acc (1 helper thread): 2 accelerators are usdldebgame and unique helper thread.

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 24 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

- 2 acc (2 helper threads): 1 helper thread per exater.

- 2 acc (1 helper + hyb. Master): master thread ceate tasks, execute them in the SMP and
also execute them in the accelerators.

- 2 acc (1 helper) + smp: SMP is used to execute IZB¥xM blocks, and 1 helper thread to
run in two hardware accelerators.

1024*1024 matrix multiplication

128*128 blocks

1.8

16

14 B 1 acc

’ B 2 acc (1 helper thread)

1.2 2 acc (2 helper threads)
- 1 B 2acc (1 helper + hyb. master)
aEa W 2acc (1 helper) + smp
g 08

0.6

0.4
0
Figure 11- Execution time results for the Matrix Multiplication
(matrix size 1024x1024, tile size 128x128).

The results do not show a significant impact ongédormance having 2 helper threads and 1 master
thread running in the Host cores of the Zynq chipwever, we can observe that the context switches
on the system increases for our application, afjhatiseems that it was not a significant problem f
this case. On the other hand, the heterogeneousitexe of 128x128 MxM blocks, with the current
scheduling policy does not help at all (2 acc beek smp) to achieve performance. The MxM exe-
cution on the SMP is too slow compared to the hardwaccelerators and any execution on it pro-
vokes a big load unbalance.

Related to this behavior, we started to evaluageptyssibility of estimating the overall heterogameo
performance, so that we can decide which is the leeslware/software co-design decision to anno-
tate the applications in a proper way.

Figure 12 shows the heterogeneous performanceatsiimfor different hardware/software co-design
alternatives to accelerate the MxM applicationthiis estimation we consider a tiled matrix multiply
of 256x256, and blocks of 64x64 or 128x128 sizee €haluation estimates which is the best decision
in a heterogeneous platform regarding to: block,simimber of accelerators, and possible hybrid exe-
cution in a SMP host. The result shows the samml tire both estimation and real execution, and this
is that SMP is not helping to improve the appl@atperformance, and the 128x128, 1 accelerator, no
heterogeneous execution is the best choice. Irp#riscular experiment, this happens because the ex
ecution of an SMP task takes much longer than xbeiwdion on the FPGA accelerator, and as a con-
sequence, when the accelerator has finished afjresktasks, there is still pending work to fingah

the SMP side.

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 25 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Therefore, this is a good starting point to analgifferent scheduling policies that can help toidvo
situations like those in Figure 11, where the lmeneous execution (i.e., acc + smp) was not a good
choice.

256x256 Blocking Maitrix Multiply
Estimator and Real

64x64 and 128x128 Blocks

=
=]

B lacc 64x64
B Zacc 64x64
lacc 128x128
WlaccBd+ 1smp
B Z acc 64 + 1smp
lacc 128 + 1smp

Speedup

Estimator Real

O = MW s = 0 W

Figure 12— Heterogeneous performance estimation vieal execution.

5.4 PS RAM (host) to PL RAM (FPGA) evaluation

Finally, we have also evaluated the possibilityaofessing the external PL RAM (1GB of memory).
Using the external memory of the PL can help tase-the data among accelerators without having to
access the SMP (PS) RAM every time (see FigurélBrefore, Nanos++ will initialize a DMA from
SMP RAM to FPGA RAM, and then, the accelerator Wwél able to access and read the FPGA RAM
by itself, and will allow the SMP to do other presang.

Figure 13 shows the performance results for a MxMtiplication of 2048x2048 single precission
floating poing using 128x128 or 256x256 blocks i@ board with a PL at 200MHz , and a PS at
800MHz. In particular, we show in the first bar teeecution time of a MxM of this size, block
128x128, using PS RAM to PL BRAM. Second and Thiads show the performance results for
128x128 and 256x256 blocking MxM. In both casesdigtinguish from top to bottom: computation
part, FPGA RAM to BRAM communication, and then PAMRto PL RAM communication. Those
preliminary results show that the RAM to RAM comruation has a very promising small cost.
Also, there is a trade off between the overall aystcommunication and computation, as it can be
seen in the figure. The 128x128 double the comnatioic time of the 256x256, but it is compensated
by the smaller computation cost of the 128x128.

In any case, this very small memory transfer cesiveen RAMs can be taken into account to use the
external FPGA memory RAM as a global shared mersouged in the GPUs in OmpSs.

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 26 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

B 256x256 Computa-
v tion

256x256 FPGA
RAM - BRAM

B 256x256 CPU RAM
- FPGA RAM

15

W 128x128 Computa-
tion

Time (seconds)

128x128 FPGA
RAM - BRAM

B 128x128 CPU RAM
0.5

- FPGA RAM
B 128x128 Not using
128x128 Direct 128x128 RAM 256x256 RAM

2048 x 2048 SP FP Matrix Multiplication

Figure 13— Memory transfer comparison PS RAM to PL RAM vs. PS RAM to PL BRAM.

6 Confirmation of DoA objectives

Describe how the deliverables conform to the Da#test objectives, using the sample table if appro-
priate.

PLANNED DELIVERED

DELIVERABLE:

* Specification of the OmpSs extensions, Report
cluster support, communication layer and
evaluation of the low-level mechanism of
the FPGA in the Zynq board.

7 Conclusion

We have presented the programming model extengiomgosed for programming the AXIOM
boards with OmpSs, the design of the support ferRRGA devices, the distributed cluster environ-
ment, and the communication layer.

Programming the AXIOM environment will be basedtbe OmpSs programming model with cluster
support, and extended to support target devicdmithoard FPGA. The Nanos++ runtime will use the

DMA library design presented in this deliverablett&ke care of data transfers between the host
memory and the FPGA devices.

Supporting distributed environments will be basedtlte communication layer (AXIOM-link) pro-
vided by FORTH to exchange data between AXIOM bgalmthe project we are considering the use

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 27 of 28

Project:AXIOM - Agile, eXtensible, fast I/O Module for the cyber-plysical era
Grant Agreement Numbe645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

of common tools, like MPI or GASNet, and also impénting our specific approach based on the
XSMLL infrastructure.

An initial evaluation of the low level communicationechanisms to transfer data to and from the
FPGA devices is shown. These results will be usethd the design of the support for the OmpSs
extensions for FPGAs to decide the specific medmand use in the implementation.

The next steps that will be taken in the projedt e to work and provide the implementation foe th
different components that we have now designed:

- The final prototype targeting the FPGA devicesgblasn the DMA library to transfer data to
and from the FPGA.

- The support for distributed systems based on comowla and the XSMLL infrastructure.

- The communication layer implemented in the FPGA.

We will also evaluate the possibility to reuse savhéhe components implementing the communica-
tion layer, specially the DMA devices, to be usedransfer data to the accelerators in the FPGA.
This way, we can save some of the FPGA resourag§itdarger accelerators on it.

References

1. Dan Bonachea; GASNet Specification, v1.1. Report NSB/CSD-02-1207. CS Division,
EECS Department, University of California, Berkeley October 2002;
http://gasnet.Ibl.gov/CSD-02-1207.pdf

2. Javier Bueno, Xavier Martorell, Rosa M. Badia, BduAyguadé, Jesus Labarta; Implement-
ing OmpSs support for regions of data in architestuwith multiple address spaces. ICS
2013: 359-368 (2013).

3. Alejandro Duran, Eduard Ayguadé, Rosa M. Badiajigddsabarta, Luis Martinell, Xavier
Martorell, Judit Planas; OmpSs: a Proposal for Ruogning Heterogeneous Multi-Core Ar-
chitectures. Parallel Processing Letters 21(2):193(2011).

4. Message Passing Interface Forum: MPI: A Messagsiitpnterface Standard, Version 3.0;
September 2012; http://www.mpi-forum.org/docs/mgifpi30-report.pdf

5. R. Giorgi, "Scalable Embedded Systems: Toward€tevergence of High-Performance and

Embedded Computing”, Proc. 13th IEEE/IFIP Int.I €oon Embedded and Ubiquitous

Computing (EUC 2015), Oct. 2015.

DMA driver for AXIOM: https://git.axiom-project.e@p=axiom-dma

XSMLL API for AXIOM: https://git.axiom-project.eufZ=XSMLL

OmpSs websiténttp://pm.bsc.es/ompss

COTSon website: http://cotson.sourceforge.net/

10. Argollo, E., Falcén, A., Faraboschi, P., Monchidvh, and Ortega, D. 2009. COTSon: infra-
structure for full system simulation. SIGOPS Og&yrst. Rev. 43, 1 (Jan. 2009), 52-61

11. Xilinx, Inc. Vivado Design Suite — HLx Edition,
http:/iwww.xilinx.com/products/design-tools/vivatitml

© N

Deliverable numberD4.1
Deliverable nameProgramming Model Extensions
File name: AXIOM-D41-v1.docx Page 28 of 28

