
Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 1 of 28

H2020 FRAMEWORK PROGRAMME
ICT-01-2014: Smart Cyber-Physical Systems

PROJECT NUMBER: 645496

Agile, eXtensible, fast I/O Module for the cyber-physical era

D4.1 – Programming Model Extensions

Due date of deliverable: 31
st

 January 2016

Actual Submission: 9
th

 February 2016

Start date of the project: 1
st
 February 2015 Duration: 36 months

Lead contractor for the deliverable: BSC

Revision: See file name in document footer.

Project co-founded by the European Commission
within the HORIZON FRAMEWORK PROGRAMME (2020)

Dissemination Level: PU

PU Public

PP Restricted to other programs participant (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Change Control
Version# Date Author Organization Change History
0.1 18.01.2016 Xavier Martorell BSC v0.1
0.3 21.01.2016 Paolo Gai EVI v0.3
0.5 25.01.2016 Daniel Jimenez BSC v0.5
0.7 27.01.2016 Dimitris Theodoropoulos FORTH v0.7
1.0 06.01.2016 Xavier Martorell BSC v1.0
1.1 08.02.2015 Jem Macy, Roberto Giorgi UNISI Final version

Release Approval
Name Role Date
Xavier Martorell WP Leader 08.02.2015
Roberto Giorgi Project Coordinator for formal deliverable 09.02.2015

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 2 of 28

The following list of authors will be updated to reflect the list of contributors to the document.

Daniel Jiménez, Carlos Alvarez, Xavier Martorell
CS Department
BSC – AXIOM

Paolo Gai
CS Department

Evidence – AXIOM

Dimitris Theodoropoulos, Dionisios Pnevmatikatos
CS Department
FORTH - AXIOM

© 2015-2018 AXIOM Consortium, All Rights Reserved.
Document marked as PU (Public) is published in Italy, for the AXIOM Consortium, on the www.AXIOM-project.eu web site

and can be distributed to the Public.
All other trademarks and copyrights are the property of their respective owners. The list of author does not imply any claim

of ownership on the Intellectual Properties described in this document.

The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for er-

rors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the

use of the information contained in this document.
This document is furnished under the terms of the AXIOM License Agreement (the "License") and may only be used or cop-

ied in accordance with the terms of the License. The information in this document is a work in progress, jointly developed

by the members of AXIOM Consortium ("AXIOM") and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets

owned by or licensed to AXIOM Partners. The partners reserve all rights with respect to such technology and related mate-

rials. Any use of the protected technology and related material beyond the terms of the License without the prior written

consent of AXIOM is prohibited. This document contains material that is confidential to AXIOM and its members and licen-

sors. Until publication, the user should assume that all materials contained and/or referenced in this document are confi-

dential and proprietary unless otherwise indicated or apparent from the nature of such materials (for example, references

to publicly available forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited with-

out the prior written consent of AXIOM or such other party that may grant permission to use its proprietary material. The

trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of AXI-

OM, its members and its licensors. The copyright and trademarks owned by AXIOM, whether registered or unregistered,

may not be used in connection with any product or service that is not owned, approved or distributed by AXIOM, and may

not be used in any manner that is likely to cause customer confusion or that disparages AXIOM. Nothing contained in this

document should be construed as granting by implication, estoppel, or otherwise, any license or right to use any copyright

without the express written consent of AXIOM, its licensors or a third party owner of any such trademark.
Printed in Siena, Italy, Europe.
Part number: Please refer to the File name in the document footer.

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE AXIOM SPECIFICATION IS PROVIDED BY AXIOM TO MEMBERS "AS IS" WITHOUT WAR-

RANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABIL-

ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
AXIOM SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES OF ANY KIND OR NATURE

WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS,

DATA OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE SPECIFICATION, WHETHER

IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 3 of 28

TABLE OF CONTENTS

GLOSSARY.. 4

Executive summary .. 5

1 Introduction .. 6

1.1 Document structure ... 6

1.2 Relation to other deliverables .. 6

1.3 Tasks involved in this deliverable .. 6

2 Programming Model Extensions .. 6

2.1 Introduction to the OmpSs Programming Model .. 6

2.2 OmpSs extensions for the FPGAs ... 9

2.3 Support for OmpSs@cluster .. 12

3 Support for distributed environments .. 12

Option 1: GASNet conduit based directly on the AXIOM network interface (FORTH) 14

Option 2a: GASNet conduit based on XSMLL .. 14

Option 2b: Nanos++ plugin based on XSMLL .. 15

Option 3: Mercurium integration with XSMLL ... 15

4 Communication layer... 15

5 Preliminary evaluations ... 18

5.1 PS RAM to PL BRAM analysis... 20

5.2 Asynchronous vs Synchronous memory transfers ... 24

5.3 Master/worker thread design in the Nanos++ runtime ... 24

5.4 PS RAM (host) to PL RAM (FPGA) evaluation .. 26

6 Confirmation of DoA objectives ... 27

7 Conclusion ... 27

References ... 28

TABLE OF FIGURES –
FIGURE 1 – OMPSS TARGET AND TASK DIRECTIVES ... 8
FIGURE 2– ARCHITECTURAL VIEW RELATED TO THE SUPPORT OF DISTRIBUTED ENVIRONMENTS. .. 13
FIGURE 3 - OVERVIEW OF THE NI STRUCTURE AND ITS CONFIGURATION FROM THE HOST CPU VIA THE SOFTWARE INTERFACE. 18
FIGURE 4 – BASIC STRUCTURE OF THE XILINX ZYNQ CHIP AND THE CONNECTIVITY OF THE ARM CORES (PS) WITH THE FPGA LOGIC (PL) 19
FIGURE 5 - ACCUMULATED MEMORY BANDWIDTH (IN MBYTES/S) USING UP TO SEVEN PS TO PL CONNECTION PORTS (STANDALONE

EXECUTION, 1 ARM CORE). .. 20
FIGURE 6 – INPUT (PS TO PL) MEMORY BANDWIDTH FOR EACH OF THE PL TO PS CONNECTIONS. .. 21
FIGURE 7 – OUTPUT (PL TO PS) MEMORY BANDWIDTH FOR EACH OF THE PL TO PS CONNECTIONS. .. 22
FIGURE 8 – INPUT (PS TO PL) MEMORY BANDWIDTH USING 1 OR 2 ACP-CONNECTED DEVICES, AND 1 OR 2 THREADS. 23
FIGURE 9– OUTPUT (PL TO PS) MEMORY BANDWIDTH USING 1 OR 2 ACP-CONNECTED DEVICES, AND 1 OR 2 THREADS. 23
FIGURE 10– PERFORMANCE OBTAINED FROM A TILED MATRIX MULTIPLICATION BENCHMARK (MATRIX SIZE 1024X1024, TILE SIZE

128X128) IN GFLOPS. ... 24
FIGURE 11- EXECUTION TIME RESULTS FOR THE MATRIX MULTIPLICATION (MATRIX SIZE 1024X1024, TILE SIZE 128X128). 25
FIGURE 12– HETEROGENEOUS PERFORMANCE ESTIMATION VS. REAL EXECUTION. .. 26
FIGURE 13– MEMORY TRANSFER COMPARISON PS RAM TO PL RAM VS. PS RAM TO PL BRAM. ... 27

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 4 of 28

GLOSSARY
ACP – Accelerator Coherency Port: an ARM AXI 64-bit port that can be used for DMA data transfers

to the Zynq FPGA. It is suitable when there is a need to keep coherency with the memory
hierarchy on the processor side

AXI – a proprietary protocol for buses introduced by ARM Ltd
AXIOM-acc – an FPGA accelerated system that performs a given function
AXIOM-arch – the architecture of an AXIOM (module or) board
AXIOM-core – the cores where the computations run in an AXIOM board
AXIOM-fpga – the programmable logic part in an AXIOM board
AXIOM-link – the interconnects that permits board-to-board communication in AXIOM
Bitstream – the binary code used for configuring the PL
BRAM – Block-RAM: a fast RAM that is available in the FPGA slices (in smaller blocks)
CUDA – NVIDIA programming model for GPUs
Conduit – A software stub that connects GASNet to a given network protocol or programming model
Device – in this context: it is the physical system that runs a ‘device-annotated’ part of the code
DMA – Direct Memory Access: a separate master that can take over local memory transfers
eMMC – Embedded Multi Media Card
FPGA – Field Programmable Gate Array
FPGA device – a device implemented on the FPGA to accelerate a portion of a program. In this doc-

ument, it is used as a synonym of accelerator
GASNet – Global Address Space over Network: is a language-independent, low-level networking

layer that provides network independent communication primitives
GP – General-Purpose Port: an ARM AXI 32-bit port that can be used for DMA data transfers to the

Zynq FPGA. It is suitable for short transfers or control operations
Infiniband – a high-performance (costly) NI
IP – Intellectual Property system (either hardware or software)
HP – High-Performance Port: an ARM AXI 64-bit port that can be used for DMA data transfers to the

Zynq FPGA. It is suitable when there is no need to keep coherency with the memory hi-
erarchy on the processor side

Mercurium – the OmpSs compiler
Nanos++ -- the OmpSs runtime
MGT – Multi-Gigabit Transceiver
MPI – Message Passing Interface: library for writing portable message-passing programs
PL – Programmable Logic: the purely FPGA part of a SoC like ZYNQ
PS – Processing System: the hardwired IPs of a FPGA-hybrid SoC like ZYNQ
NI – Network Interface
OpenCL – Khronos group programming model for heterogeneous architectures
OmpSs – Extension of OpenMP programming model to support task dataflow programming
OmpSs@FPGA – FPGA extension of OmpSs
OmpSs@Cluster – Cluster extension of OmpSs
PHY – the physical implementation of the network interface
QSPI – Quad Serial Peripheral Interface
RDMA – Remote DMA: a DMA that can work from one computer to another computer
SoC – System on Chip
USB OTG – Universal Serial Bus On The Go
XSMLL – (pronounced X-SMALL) eXtended Shared-Memory Low-Level API (see D7.1)
X-Thread – a self-contained thread that can be distributed across boards through XSMLL
ZYNQ -- A System-on-Chip commercialized by XILINX, which includes FPGA and CPUs

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 5 of 28

Executive summary
This document describes the programming model extensions proposed for programming the AXIOM
boards with OmpSs, the design of the support for the FPGA devices, the distributed cluster environ-
ment, and the communication layer.

Following the existing OmpSs support for CUDA and OpenCL, in the AXIOM project we map the
OmpSs target device extensions onto heterogeneous nodes including accelerators based on FPGAs.
Code annotated with the target device (fpga) and task directives will be automatically offloaded by
the Mercurium compiler onto separate files, and compiled with the FPGA tools to build the accelera-
tor for the FPGA (i.e.,. on the programmable logic part of a System-on-Chip as the Zynq or in general
on the AXIOM-fpga). These tasks will be spawned by the Nanos++ runtime system to run on the
FPGA and or on the cores (i.e., the ARM-A9 cores in case of the Zynq SoC or in general on the AX-
IOM-cores). Nanos++ will use a custom DMA library presented in this deliverable to take care of data
transfers between the host memory and the FPGA devices.

The support for distributed cluster environments is based on the Nanos++ runtime system and its con-
nection to the communication layer, through specific communications software. In this project we are
considering the use of common tools, like MPI or GASNet, and also implementing our specific ap-
proach based on the XSMLL infrastructure (cf. deliverable D7.1).

An initial evaluation of the low level communication mechanisms to transfer data to and from the
FPGA devices (i.e., to/from the AXIOM accelerators) is shown. These results will be used during the
implementation of the support for the OmpSs extensions for FPGAs to decide the specific mechanism
to use in each situation.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 6 of 28

1 Introduction

1.1 Document structure
This deliverable is organized as follows

• Section 2 describes the programming model extensions proposed for programming the AXI-
OM boards with OmpSs.

• Section 3 describes the runtime support planed for distributed environments based on the
connection of several AXIOM boards.

• Section 4 presents the design of the communication layer used to connect AXIOM boards and
build the distributed system.

• Section 5 shows the evaluation of the low-level FPGA data transfer mechanisms to support
OmpSs.

1.2 Relation to other deliverables
This document completes the description of the programming model extensions and their support,
presented in the document “MS41 – Definition of the Programming Model Extensions”, and designed
to run on the AXIOM platform presented in the document “D6.1 – Technical specifications of AXI-
OM board”.

1.3 Tasks involved in this deliverable
This deliverable is the result of the work developed in tasks:

• T4.1: Requirement definition for the programming model extensions
• T4.2: OmpSs programming model extensions
• T5.3: Parallel programming library
• T6.5: System interconnect

2 Programming Model Extensions
In this section, we describe the OmpSs Programming Model [3], the extensions planned for OmpSs to
spawn tasks in the FPGA-device (an AXIOM accelerator), and the extensions needed to support the
cluster version. This support has been designed and partially developed during the first year of the
AXIOM project.

2.1 Introduction to the OmpSs Programming Model
The OmpSs Programming Model supports the execution of heterogeneous tasks written both in
OpenCL and CUDA, and in the distributed cluster version. Both OpenCL and CUDA options require
the programmer to provide the OpenCL or CUDA code, and use the target clauses to move the data to
the associated accelerator. In the AXIOM project, we are using the same technique to spawn tasks to
the FPGA, provided there is a compiler to generate the FPGA bitstream implementing the task, from
C/C++ code, or there is an existing bitstream available with a known interface to access data. For ex-

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 7 of 28

ecuting tasks in the cluster version, the programmer needs to specify the task as plain C/C++ code.
Execution on the OmpSs@cluster version automatically allows the runtime system to spawn tasks
remotely.

The programming model will allow to parallelize applications on the AXIOM cluster, and spawn
tasks on the FPGAs available on each board. Using OmpSs@cluster with FPGAs support, program-
mers will be able to express two levels of parallelism.

A first level of parallelism will be targeted to the AXIOM-cores, i.e. the cores that are available on the
AXIOM-board (e.g., the ARM-A9 cores in the case of a Zynq SoC, c.f. Deliverable D6.1). Tasks at
this level will be spread across the AXIOM boards, as if they would be executed on an SMP machine
(see Sections 3 and 4 for the distributed cluster support).

A second level of task parallelism will be expressed through the OmpSs extensions targeting the
FPGAs (see below, Section 2.2).

The OmpSs Programming Model is based on two main components and some additional tools:

• The Mercurium compiler [8] takes the source code as specified by the programmer and un-
derstands the OmpSs directives to transform the code to run on heterogeneous platforms, in-
cluding OpenCL and CUDA accelerators. In this project, the compiler will be extended to al-
so support FPGA-based accelerators.

• The Nanos++ runtime system, which is the responsible to manage and schedule parallel tasks,
respecting their dependences, transferring the data needed to/from the accelerators, when
needed and the lower-level interactions (cf. Section 3).

• Additionally, OmpSs can use the Extrae tool to generate execution traces that can be later
visualized with the Paraver tool, and analyze their behavior. Both Extrae and Paraver are also
developed at BSC. This complements the evaluation tools developed in WP7 (see Deliverable
D7.1).

Figure 1 shows the existing syntax used in the target and task directives in OmpSs. Task directive
clauses act as follows:

• in, out, and inout clauses allow the specification of the input, output only, and input/output
ranges of data that are to be used by the task. This way, the Nanos++ runtime system takes
care to manage the task dependences before and after executing this task.

• concurrent and commutative allow the specification of variants of inout dependences for inout
data. Concurrent means that data is accessed with an explicit synchronization inside the task,
so that the runtime system can exploit tasks in parallel. Commutative indicates that the tasks
can be executed sequentially, but in any order (possibly different from the creation order).

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 8 of 28

Figure 1 – OmpSs target and task directives

• priority(P) is used to specify the importance of the task. It is a hint to the scheduler, that may
try to execute higher priority (P) tasks before lower priority tasks, always respecting the de-
pendences between them.

• label(name) provides a name for the task, specifically for the instrumentation tools.
• shared, private, firstprivate, Default are clauses specifying the data sharing for the listed vari-

ables. They are compatible with the same clauses in OpenMP.
• untied means that the task can change processor after blocking in a taskwait. By default tasks

are tied, and they execute always in the same processor after a taskwait.
• final(expression) indicates that this task will not create inner tasks.
• if(expression) indicates if the task can be deferred or not. If the expression evaluates to True,

the task will be a regular task. If the expression evaluates to False, the task will be created and
executed immediately by the same thread.

Target directive clauses act as follows:

• device specifies the specific device this task is to run on. “smp” means the host cores,
“opencl” indicates an OpenCL-capable device, and “cuda”, a CUDA-capable device.

• implements(function-name) indicates that this task is equivalent to the function indicated, pos-
sibly for a different device, and the runtime system is free to schedule either one in the avail-
able device.

• copy_deps / no_copy_deps, indicate if the dependences listed in the task directive should also
be kept consistent / or not with the accelerator.

• copy_in, copy_out, copy_inout list additional data that should be kept consistent with the ac-
celerator.

• ndrange, shmem, file, and name clauses provide additional arguments for OpenCL and
CUDA target tasks, which are not relevant for AXIOM.

Tasks can be associated to a code block or to a function. In the case of inline code annotations, tasks
targeting the host cores are outlined as new functions by the Mercurium compiler and spawned as
tasks to be executed on the SMP host. Tasks targeting the FPGA will be outlined by Mercurium onto
separate files, and compiled through the Xilinx Vivado HLS in order to generate VHDL, and later
through the Vivado tool to generate the bitstream for the FPGA [11]. Invoking tasks on the FPGA will
be done by the Nanos++ runtime system by sending the data needed, executing the FPGA device, and
getting the resulting data back to the host memory.

In the case of function interfaces annotated with the target device (fpga) directive, the invokations of
such functions will be done in the FPGA device using the same parameter passing.

#pragma omp target device ({ smp | opencl | cuda }) \
 [implements (function_name)] [copy_ deps | no_copy_deps] \
 [copy_in (array_spec ,...)] [copy_ou t (...)] [copy_inout (...)] \
 [ndrange (dim, …)] [shmem(...)] [file(name)] [name(name)]
#pragma omp task [in (...)] [out (...)] [inout (...)] [concurrent (...)] [commutative (...)] \

[priority (P)] [label (name)] \
[shared(...)][private(...)][firstprivate(...)][def ault(...)] \
[untied][final (expression)][if (expression)]

 {code block or function prototype}

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 9 of 28

2.2 OmpSs extensions for the FPGAs
OmpSs needs to be extended to support the Zynq chip with the FPGA selected in the AXIOM project.
The extensions to provide support for these chips in the Mercurium compiler are:

• To incorporate a new target device named “fpga”: in addition to the current smp, cuda
and opencl devices, the “fpga” device will cause the Mercurium compiler to understand
that the function annotated is to be compiled with the Xilinx Vivado HLS compiler, for
the FPGA, in order to generate the bitstream.

With this extension, the compiler will generate code for the runtime system specifying the tasks that
should be run in the FPGA device. The Nanos++ runtime system will also need to be extended, in the
following way:

• Support to spawn tasks in the FPGA device.

• Support for the target clauses related to data transfers:

• Data-copy clauses (copy_in, copy_out, copy_inout): for the FPGA target, they will
trigger the data transfer of the data specified to/from the FPGA device.

• Dependence-copy clauses (copy_deps, no_copy_deps): for the FPGA target, they will
indicate if, additionally, the data dependences specified in the associated task should
be transferred or not, with the directionality associated in the dependence clauses.

• Support for data transfers to/from the FPGA. The Nanos++ runtime will invoke the ser-
vices of the DMA library developed to transfer data in the FPGA environment.

• Include the FPGA device in the support of the implements clause in order to allow several
implementations of tasks to be scheduled in the processors/devices available.

The DMA library interface [6] provides the means to allocate buffers to exchange data between the
Linux kernel and the FPGA hardware. In the current prototype, when the FPGA has been given the
data to operate with, the IP kernel is automatically started, and after finishing, the results can be read
from it. The current version of the interface is shown in the following tables. It may still change as the
work on Nanos++ and the Linux driver proceeds in the project.

Method parameter Description

Initializes the DMA userspace library and driver.

xdma_status xdmaOpen (void);

Method parameter Description

Cleans up the DMA userspace library and driver.

xdma_status xdmaClose (void);

Method parameter Description

uint32_t * num_devices [out] Number of FPGA-devices present in the system

Returns the number of devices present in the system.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 10 of 28

xdma_status xdmaGetNumDevices (uint32_t * num_devices);

Method parameter Description

uint32_t entries [in] Number of FPGA-device handles that can be stored in the ‘devices’
array

xdma_device * devices [out] Array to hold the device handles, at least of size entries

uint32_t * num_devices [out] Actual number of device handles returned

Returns the device handles for the devices present in the system.

xdma_status xdmaGetDevices (uint32_t entries, xdma_device * devices,

 uint32_t * num_devices);

Method parameter Description

xdma_device device [in] FPGA-device that will be connected to the newly allocated channel

xdma_dir direction [in] Direction of the channel (XDMA_TO_DEVICE, XDMA_FROM_DEVICE)

xdma_channel_flags flags [in] Channel flags (currently unused)

xdma_channel * channel [out] Handle to the newly opened channel

Open a device channel. Each device can have one input and 1 output channels used to send/receive data.

xdma_status xdmaOpenChannel (xdma_device device, xdma_dir direction,

 xdma_channel_flags flags, xdma_channel * channel);

Method parameter Description

xdma_channel * channel [in,out] DMA channel to be closed

Closes a DMA channel and releases its resources.

xdma_status xdmaCloseChannel (xdma_channel * channel);

Method parameter Description

uint8_t ** buffer [out] Pointer to allocated buffer

xdma_buf_handle * handle [out] DMA buffer handle

uint32_t len [in] Buffer length in bytes

Allocates a buffer in kernel space to support data transfers to a DMA device. The buffer will be pinned.

xdma_status xdmaAllocateKernelBuffer (uint8_t ** buffer,

 xdma_buf_handle handle, uint32_t len);

Method parameter Description

void * buffer [in] Address of the buffer to be freed

xdma_buf_handle handle [in] Buffer handle to be freed

Free a pinned buffer allocated in kernel space and unmap the region from user space.

xdma_status xdmaFreeKernelBuffer (void * buffer, xdma_buf_handle handle);

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 11 of 28

Method parameter Description

xdma_buf_handle buffer [in] Buffer handle

uint32_t len [in] Buffer length

uint32_t offset [in] Transfer offset

xdma_xfer_mode mode [in] Transfer mode (XDMA_SYNC, XDMA_ASYNC)

xdma_device device [in] DMA device to be used to transfer data

xdma_channel channel [in] DMA channel to use

xdma_transfer_handle * handle [out] Handle identifying the DMA transfer, used with XDMA_ASYNC

Submits a pinned buffer allocated in kernel space for a DMA transfer.

xdma_status xdmaSubmitKBuffer (xdma_buf_handle buffer, uint32_r len,
 uint32_t offset, xdma_xfer_mode mode,
 xdma_device device, xdma_channel channel,

 xdma_transfer_handle * transfer);

Method parameter Description

void * buffer [in] Buffer to be transferred

uint32_t len [in] Buffer length

xdma_xfer_mode mode [in] Transfer mode (XDMA_SYNC, XDMA_ASYNC)

xdma_device device [in] DMA device to be used to transfer data

xdma_channel channel [in] DMA channel to use

xdma_transfer_handle * handle [out] Handle identifying the DMA transfer, used with XDMA_ASYNC

Submits a user allocated buffer (i.e. using malloc) to be transferred through DMA.

xdma_status xdmaSubmitBuffer (void * buffer, uint32_r len, xdma_xfer_mode mode,
 xdma_device device, xdma_channel channel,
 xdma_transfer_handle * transfer);

Method parameter Description

xdma_transfer_handle handle [in] DMA transfer handle to be checked

Tests the status of a DMA transfer (finished, pending, or in error).

xdma_status xdmaTestTransfer (xdma_transfer_handle handle);

Method parameter Description

xdma_transfer_handle handle [in] DMA transfer handle to wait for

Waits for a transfer to finish (finished, pending, or in error).

xdma_status xdmaWaitTransfer (xdma_transfer_handle handle);

Method parameter Description

xdma_transfer_handle handle [in,out] DMA transfer handle to be released

Releases the data structures associated with a DMA transfer.

xdma_status xdmaReleaseTransfer (xdma_transfer_handle * handle);

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 12 of 28

2.3 Support for OmpSs@cluster
The OmpSs@Cluster [2] infrastructure uses a communication layer to launch tasks in remote nodes.
Task descriptors and data travel on the communication layer. In our current implementation, this layer
is GASNet [1], usually running on top of MPI [4]. The different alternatives to implement this ap-
proach that are currently under study in our project are presented in Section 3. The underlying com-
munications layer is presented in Section 4.

3 Support for distributed environments
This Section provides a brief explanation of the support needed to integrate the OmpSs programming
model into the networking support provided by the AXIOM boards.

Note: Further details will be specified in Deliverable D5.2 (due at month m18 in the project, i.e. 6
months after this deliverable), where we will describe in more detail the aspects related to the remote
memory access.

The main goal that drives the choices described below is to provide an efficient and possibly light-
weight implementation of the infrastructure that allows OmpSs to use the AXIOM networking infra-
structure.Given the complexity of the framework, we realized that there are a number of possible
ways for implementing this kind of support, each one requiring integration at different levels of the
OmpSs toolchain. For this reason, during the project we are going to explore, implement and evaluate
different options, in order to choose the ones that best fit the project objectives. The options we are
exploring (described in more detail below) are (note the option numbers are the same depicted in Fig-
ure 2):

• Integration with OmpSs@cluster as a GASNet conduit based directly on the FORTH network
interface (option 1).

• Integration with OmpSs@cluster as a GASNet conduit based on XSMLL [5][7] (option 2a);
• Integration with OmpSs as a Nanos++ [8] plugin based on XSMLL [5][7] (option 2b);

• Integration directly below Mercurium [8] (option 3);

Please note that the outcome of the evaluation is likely not to provide a single "winner", because each
solution has its advantages and drawbacks. As we will discuss below, for example, we expect option 1
to be a pure software implementation over the FORTH network interface (potentially slower but with
lower FPGA requirements), whereas option 2b will take advantage of the XSMLL dataflow approach
[5][7] (thus potentially faster but with higher FPGA requirements).

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 13 of 28

Figure 2– Architectural view related to the support of distributed environments.

Figure 2 shows an architectural view of the various options under exploration. In particular, we high-
light the following main architectural components:

• The Mercurium source to source compiler;
• The Nanos++ Runtime library;
• A set of Nanos++ "targets". The interesting ones for this Section are the "cluster" target and

the new "XSMLL" target developed in the context of the AXIOM Project (see later);
• The GASNet layer used for the implementation of the "cluster" target;
• The GASNet "conduits", which are basically plugins that enable GASNet to run on different

transport (network) layers. Please note in particular MPI and UDP, which are the ones on
which OmpSs@cluster typically works, and in addition to these, please note the new XSMLL
and FORTH conduits in development in the context of the AXIOM Project (see later);

• The XSMLL Layer, providing fine-grained task dataflow;
• The FORTH Message Passing / RDMA networking support, implemented in FPGA and

available to the ARM cores of the Xilinx Zynq microcontroller used in the AXIOM boards.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 14 of 28

We can now describe shortly the options we are considering in the AXIOM Project. To ease the un-
derstanding of the reader, we are presenting them in reverse order, because in this way each step will
be "incremental" to the previous one.

Option 1: GASNet conduit based directly on the AXIOM network
interface (FORTH)
The straightforward way of integrating OmpSs with the AXIOM-link interconnect by FORTH is to
operate at the level of OmpSs@cluster, providing a so called "conduit" of GASNet. A "conduit" of
GASNet is a plugin of GASNet that allows the implementation of the full GASNet API on top of a
"transport layer".

Currently, there are various transport layers that can be used, starting from the simple UDP layer, to
MPI, Infiniband and others.

The approach here is to re-implement the GASNet conduit API using the Linux Kernel Driver in de-
velopment in Task 5.1. The implementation will take advantage of the RDMA support provided by
the FORTH for the AXIOM-link interconnect in a way similar to what done in the Infiniband conduit.

Option 2a: GASNet conduit based on XSMLL
This option is similar to Option 1, but it tries to use the XSMLL [5][7] Dataflow layer to provide a
proper transport layer for the GASNet conduit.

After an initial implementation prototype done on the COTSon simulator [9][10] was developed as
part of the WP7 activities (see deliverable D7.1), we foresee the fact that this option will probably not
be the most efficient one. The reason for this is related to the semantic abstractions which are present
at the various levels.

In particular, both the Nanos++ plugin interface and the XSMLL layers exposes a "task" semantic. On
the other hand, the OmpSs@Cluster has the role to transform the Nanos++ plugin "task" semantic into
something more manageable by a network interface. OmpSs@Cluster does that using the GASNet
layer, which exports an "active message" semantic to the upper layer. OmpSs@cluster, in practice,
transforms the "task" semantic into a "active message" semantic, leaving the rest to GASNet.

At the GASNet layer, the "active message" semantic exported at the top is then managed internally,
and then implemented using simpler conduit interfaces. The conduit interfaces are using a sort of
message exchanges using asynchronous message sends and synchronous message receive functionali-
ty.

As we can see, the initial "task" semantic, available at the Nanos++ plugin level, has been transformed
into a message passing approach, available at the GASNet conduit level. To help this, partners UNISI
and EVI are exploring the possibility to add a message passing extension to XSMLL (part of this
work is developed in WP5). The appropriate granularity and operations are under exploration.

For the above reasons, we are not confident that this option will provide the best results, but was con-
sidered since it was a possibility apparently reasonable and simple.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 15 of 28

Option 2b: Nanos++ plugin based on XSMLL
Given the limitations of option 2a, we decided to evaluate option 2b, which tries to avoid the semantic
incompatibility between the various layers.

In particular, the idea is to develop an additional plugin to Nanos++, which will allow the direct usage
of the XSMLL layer. This approach is for sure the most promising one, since the semantic exported
by XSMLL and required by Nanos++ are somehow similar and based on a "task" semantic.

Moreover, the XSMLL interface will provide the runtime support allowing the distribution of X-
Threads on the various nodes allowing the possibility to early test the results using the COTSon
[9][10] simulator.

Afterwards, the possibility to optimize the implementation of XSMLL in FPGA is going to provide a
performance boost to the implementation.

We expect to implement an initial version of this option during the second year of the project. This
initial version will support a subset of the constructs available on the OmpSs programming model
(e.g., the first implementation will be without the "taskwait" construct).

Option 3: Mercurium integration with XSMLL
Another option, which could be available, stems from the idea that the XSMLL execution model
could be directly integrated into Mercurium, in a way to provide direct XSMLL code generation of
OmpSs code.

If on one hand this option seems to provide an increased performance thanks to the direct usage of the
XSMLL implementation (which can be optimized in FPGA), on the other hand it needs some special
care in the integration with the other "targets" of OmpSs (in particular the cluster and FPGA targets in
Nanos++).

Moreover, additional study needs to be done in order to support data dependencies with the richness
of options currently provided by the OmpSs framework thanks to the Nanos++ implementation. In
particular, task dependencies in OmpSs can be specified using complex dependency constraints,
whereas the XSMLL interface offers a method based on counters; an implementation of option 3 will
have the (non-straightforward) need to map those two methods together.

For these reasons, after a first evaluation we plan not to implement option 3 during the AXIOM Pro-
ject.

4 Communication layer
The AXIOM communication layer is responsible for the data transmission among all available nodes
in the network. It consists of a software library that allows the host CPU of each node to send and re-
ceive control and RDMA messages via its Network Interface (NI) module. The tables below summa-
rize the current version of the NI software function prototypes. They may still change as the work on
the interface and Linux driver proceeds in the project.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 16 of 28

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 17 of 28

Figure 3 illustrates the NI structure and how the software library can be used for its configuration
from the host CPU. During network initialization, a network topology algorithm is executed on each
node to identify its neighbor ones. Within each node, the topology algorithm will use the functions
setNodeId, identifyNeighbotNode and reportNeighbors, to discover its neighbors and report them to
the master network node. The latter will generate each node’s routing table (used by the router module
during packet relaying if required), which can be configured by the host CPU via the NI software li-
brary (setRoutingTable). We should note that in case a node is added / removed to the network, the NI
software library provides methods (deleteNodeFromRoutingTable, updateRoutingTable) to update ac-

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 18 of 28

cordingly the NI routing table / remove completely a node if needed. Moreover, helper functions (no-
deId, getRoutingTable), can provide debugging capabilities.

NI software interface

status

registers

control

registers

msgs

queue

NI internal infrastructure

router

routing table

TxRx

host CPU

N
e

tw
o

rk
 I

n
te

rf
a

ce

Figure 3 - Overview of the NI structure and its configuration from the host CPU via the software interface.

The NI employs a set of memory-mapped status and control registers. The status register is directly
accessible by the NI library (readNIStatusReg) and the host CPU can read it to monitor various pa-
rameters, such as the DMA engine state (idle, busy), the messages queues fill status (empty, not emp-
ty, near full, etc), the PHY link state (connected, down), as well as the progress of on-going RDMA
requests / writes (readNIHWCounter). The control registers are also directly accessible by the NI
software (setNIRegister); the host CPU can write them to configure NI parameters, such as the node
id, the PHY link loopback mode, and successful transmission notifications.

Finally, the NI employs a set of memory-mapped hardware queues, accessible by the NI software li-
brary. The CPU can use these queues to push asynchronous message transmissions, such as RDMA
requests / writes (RDMAreq, RDMAwrite), and raw data transmissions (sendRawData). Also, it can
check asynchronously for any received messages, and proceed to further processing if required.

5 Preliminary evaluations
In this section, we present some preliminary results that will be used in the AXIOM project to select
proper implementation options for OmpSs to use the Zynq FPGA. Figure 4 presents the basic diagram
of the Zynq chip with the main blocks, and the way they are interconnected. The central part of the
figure is the Zynq chip. It is split in two main parts: at the top part, the Processing System (PS), con-
tains the hardwired Cortex A9 processors and a memory controller. At the bottom, the Programmable
Logic (PL) contains the FPGA

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 19 of 28

Memories represented at the sides of Figure 4 are the main host memory, or PS RAM (Host), on the
left side, which is directly accessible from the A9 cores, and it is the one that Linux manages, with a
capacity of 1GByte; and the FPGA memory, or PL RAM (FPGA), on the right side, which is directly
accessible from the FPGA, and its capacity is also of 1GByte. Additionally, the PL-BRAM memory
(shown inside the AXIOM accelerator IP) is the typical block RAM memory available inside FPGA
chips. It is smaller in size, ranging from 3.3MBytes (on the 7015 chip) to 19.3MBytes (on the 7045
chip).

In this environment, programmers locate their application data in the PS RAM (Host). From there data
can be transferred to the PL-RAM (FPGA) when the amount of data is significant, and also when it is
known to be reused often. And for smaller chunks of data (up to a few Mbytes), it is enough to move
it directly to the PL-BRAM on the specific FPGA device (AXIOM accelerator IP in the figure).

Figure 4 – Basic structure of the Xilinx Zynq chip and the connectivity
of the ARM cores (PS) with the FPGA logic (PL)

In particular, we show measurements of the following data access methods:

• The data transfer communication connection between the Programmable Logic and the Host
CPU in the Zynq FPGAs (path from the PS RAM of the host, to the PL BRAM on an acceler-
ator in Figure 4)

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 20 of 28

• The data transfer type: synchronous or asynchronous at the Nanos++ FPGA device dependent
layer

• Performance estimation and evaluation of hardware/software decisions based on the number
of accelerators and size, and the heterogeneous execution

• Evaluation of the performance of the data transfers from the PS RAM of the host to the PL
RAM of the FPGA, and then to the PL BRAM on the accelerator (see Figure 4).

5.1 PS RAM to PL BRAM analysis
In the Zynq boards, the type of memory transfer to implement is important, as it will influence the de-
sign and generation of the hardware accelerators to be run in the FPGA, and to create the device tree
of the Linux operating system. This is necessary because the hardware accelerator implementations
have to include on the FPGA the IPs needed to do the data transfers from the RAM of the Host to the
BRAMs of the FPGA, and this IP of the DMA engine should be recognized by the Linux operating
system at boot time.

This evaluation will help decide the best FPGA device to perform memory transfers that can be de-
veloped as a part of the FPGA device support in the Nanos++ runtime.

Figure 5 shows the accumulated memory bandwidth achieved when transferring a certain amount of
32-bit elements using the seven possible ports between the PL and the PS systems: 1 Accelerator Co-
herence Port (ACP), 4 High Performance (HP) ports, and 2 General Purpose (GP) Ports (see Figure
4). The experiment is done in standalone mode, and with a single ARM core driving the transfers. The
accumulated memory bandwidth is shown for input (PS RAM to PL BRAM) and output (PL BRAM
to PS RAM) memory transfers. The total accumulated memory bandwidth is of about 1.5GB/s.

Figure 5 - Accumulated memory bandwidth (in Mbytes/s) using up to seven PS to PL connection ports
(standalone execution, 1 ARM core).

Although the data rate reached in these experiments should be enough to fully support communica-
tions of 3-6 Gbit/s on the AXIOM-link connection, the specific IP cores used to implement the NI of
the communication layer may limit the final communication rate achieved.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 21 of 28

Figure 6 and Figure 7 show the separated memory bandwidth for each of the connection ports. The
only ACP connection is shown, and in the case of the HP and GP interfaces, with up to 4 and 2 con-
nections respectively. Table 1 shows the unitary and aggregated bandwidth for each of the port types,
when working on a single direction. The peak memory bandwidth is not achieved for any connection,
as shown in the figures.

The input memory bandwidth (Figure 6) for the ACP connection is worse than that achieved by the
other connections. In this case, ACP maintains the coherence with the SMP. The output memory
bandwidth (Figure 7) on the ACP connection is similar to 2 GP connections running in parallel and
slightly better than two non-coherent HP connections.

Table 1 – Peak, single direction, bandwidth achieved for each type of communication port in the Zynq FPGA
running at 100 Mhz. (in MBytes/s)

Port ACP HP GP

Peak bandwidth (unitary) 381 MB/s 381 MB/s 381 MB/s

Peak bandwidth (aggregated) 381 MB/s (1 port) 1525 MB/s (4 ports) 762 MB/s (2 ports)

Figure 6 – Input (PS to PL) memory bandwidth for each of the PL to PS connections.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 22 of 28

Figure 7 – Output (PL to PS) memory bandwidth for each of the PL to PS connections.

Therefore, the ACP does not seem to be the best choice based on the memory transfer bandwidth, but
it keeps the coherence of the memory cache with the Host cores of the Zynq system, which is really
important for heterogeneous parallel executions. We decided to evaluate if having more than one de-
vice connected to the ACP port may help getting better performance. Figure 8 (input) and Figure 9
(output) show the input and output memory bandwidth achieved using the ACP connection with:

• 1 FPGA device (i.e., one AXIOM accelerator on the FPGA), and 1 thread generating data
(blue bar)

• 2 FPGA devices, and 1 thread generating data (red bar)
• 2 FPGA devices, and 2 threads generating data (yellow bar)

Figures also show the peak performance that can be achieved with 1 device (green curve) and 2 de-
vices (brown curve). We have done the experiment varying the accelerator frequency since this also
influences the memory bandwidth performance.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 23 of 28

Figure 8 – Input (PS to PL) memory bandwidth using 1 or 2 ACP-connected devices, and 1 or 2 threads.

On one hand, results are really promising since we can double the DMA memory transfer bandwidth
using 2 devices (with 1 or 2 threads) in the case of input memory transfers. This is a significant im-
provement if we look at the 100MHz frequency, but it is even more significant the bandwidth
achieved when increasing the frequency. On the other hand, the output memory bandwidth achieved
is doubled also when using 2 threads, but not for 1 thread. These results show that the ACP connec-
tion can achieve good memory bandwidth, keeping the coherence of the memories, if we use more
than one device and more than one thread to use the accelerators connected to the ACP.

Figure 9– Output (PL to PS) memory bandwidth using 1 or 2 ACP-connected devices, and 1 or 2 threads.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 24 of 28

5.2 Asynchronous vs Synchronous memory transfers
Another aspect that has been evaluated is the usage of synchronous or asynchronous memory transfers
to improve the application performance. Figure 10 shows the performance comparison in GFLOPS
for a Matrix Multiply (1024x1024) using a 128x128 MxM accelerator, at different frequencies, using
synchronous and asynchronous memory transfers. The GFLOPS are calculated by dividing the
amount of floating point operations (10243) by the time taken by the execution of the matrix
multiplication. In the experiment with asynchronous transfers, the benchmark computes on a block,
while there are transfers for other blocks in progress, thus overlapping communication of matrix
blocks with computation on other blocks already transfered. In the synchronous version all data
transfers have a DMA wait operation before proceeding.

Results show that (1) frequency helps to improve the MxM application performance, and (2)
asynchronous memory transfers are worthy to be implemented inside the Nanos++ runtime.

5.3 Master/worker thread design in the Nanos++ runtime
Currently, OmpSs uses a schema with one master thread and one helper thread per device. However,
in a Zynq system, with only 2 cores in the SMP, this can mean a significant impact due to context
switches (three threads fighting to obtain 1 of the two SMP cores). We have evaluated the current be-
havior of this case, and also two more: (1) one helper thread is in charge of more than one FPGA ac-
celerator, and (2) one SMP thread (worker or master) deals with SMP and accelerator executions.

Figure 10– Performance obtained from a Tiled Matrix Multiplication benchmark
(matrix size 1024x1024, tile size 128x128) in GFLOPS.

Figure 11 shows the performance results of those three situations using a prototype of the Nanos++
runtime. The evaluation is done for a MxM of 1024x1024, using 128x128 blocks. We also show per-
formance results for the following cases:

- 1 acc: using just one accelerator
- 2 acc (1 helper thread): 2 accelerators are used by the same and unique helper thread.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 25 of 28

- 2 acc (2 helper threads): 1 helper thread per accelerator.
- 2 acc (1 helper + hyb. Master): master thread can create tasks, execute them in the SMP and

also execute them in the accelerators.
- 2 acc (1 helper) + smp: SMP is used to execute 128x128 MxM blocks, and 1 helper thread to

run in two hardware accelerators.

Figure 11- Execution time results for the Matrix Multiplication
(matrix size 1024x1024, tile size 128x128).

The results do not show a significant impact on the performance having 2 helper threads and 1 master
thread running in the Host cores of the Zynq chip. However, we can observe that the context switches
on the system increases for our application, although it seems that it was not a significant problem for
this case. On the other hand, the heterogeneous execution of 128x128 MxM blocks, with the current
scheduling policy does not help at all (2 acc 1 helper + smp) to achieve performance. The MxM exe-
cution on the SMP is too slow compared to the hardware accelerators and any execution on it pro-
vokes a big load unbalance.

Related to this behavior, we started to evaluate the possibility of estimating the overall heterogeneous
performance, so that we can decide which is the best hardware/software co-design decision to anno-
tate the applications in a proper way.

Figure 12 shows the heterogeneous performance estimation for different hardware/software co-design
alternatives to accelerate the MxM application. In this estimation we consider a tiled matrix multiply
of 256x256, and blocks of 64x64 or 128x128 size. The evaluation estimates which is the best decision
in a heterogeneous platform regarding to: block size, number of accelerators, and possible hybrid exe-
cution in a SMP host. The result shows the same trend in both estimation and real execution, and this
is that SMP is not helping to improve the application performance, and the 128x128, 1 accelerator, no
heterogeneous execution is the best choice. In this particular experiment, this happens because the ex-
ecution of an SMP task takes much longer than the execution on the FPGA accelerator, and as a con-
sequence, when the accelerator has finished all assigned tasks, there is still pending work to finish on
the SMP side.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 26 of 28

Therefore, this is a good starting point to analyze different scheduling policies that can help to avoid
situations like those in Figure 11, where the heterogeneous execution (i.e., acc + smp) was not a good
choice.

Figure 12– Heterogeneous performance estimation vs. real execution.

5.4 PS RAM (host) to PL RAM (FPGA) evaluation
Finally, we have also evaluated the possibility of accessing the external PL RAM (1GB of memory).
Using the external memory of the PL can help to re-use the data among accelerators without having to
access the SMP (PS) RAM every time (see Figure 4). Therefore, Nanos++ will initialize a DMA from
SMP RAM to FPGA RAM, and then, the accelerator will be able to access and read the FPGA RAM
by itself, and will allow the SMP to do other processing.

Figure 13 shows the performance results for a MxM multiplication of 2048x2048 single precission
floating poing using 128x128 or 256x256 blocks in a 706 board with a PL at 200MHz , and a PS at
800MHz. In particular, we show in the first bar the execution time of a MxM of this size, block
128x128, using PS RAM to PL BRAM. Second and Third bars show the performance results for
128x128 and 256x256 blocking MxM. In both cases we distinguish from top to bottom: computation
part, FPGA RAM to BRAM communication, and then PS RAM to PL RAM communication. Those
preliminary results show that the RAM to RAM communication has a very promising small cost.
Also, there is a trade off between the overall cost on communication and computation, as it can be
seen in the figure. The 128x128 double the communication time of the 256x256, but it is compensated
by the smaller computation cost of the 128x128.

In any case, this very small memory transfer cost between RAMs can be taken into account to use the
external FPGA memory RAM as a global shared memory is used in the GPUs in OmpSs.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 27 of 28

Figure 13– Memory transfer comparison PS RAM to PL RAM vs. PS RAM to PL BRAM.

6 Confirmation of DoA objectives
Describe how the deliverables conform to the DoA stated objectives, using the sample table if appro-
priate.

PLANNED DELIVERED

DELIVERABLE:

• Specification of the OmpSs extensions,
cluster support, communication layer and
evaluation of the low-level mechanism of
the FPGA in the Zynq board.

Report

7 Conclusion
We have presented the programming model extensions proposed for programming the AXIOM
boards with OmpSs, the design of the support for the FPGA devices, the distributed cluster environ-
ment, and the communication layer.

Programming the AXIOM environment will be based on the OmpSs programming model with cluster
support, and extended to support target devices in the board FPGA. The Nanos++ runtime will use the
DMA library design presented in this deliverable to take care of data transfers between the host
memory and the FPGA devices.

Supporting distributed environments will be based on the communication layer (AXIOM-link) pro-
vided by FORTH to exchange data between AXIOM boards. In the project we are considering the use

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D4.1
Deliverable name: Programming Model Extensions
File name: AXIOM-D41-v1.docx Page 28 of 28

of common tools, like MPI or GASNet, and also implementing our specific approach based on the
XSMLL infrastructure.

An initial evaluation of the low level communication mechanisms to transfer data to and from the
FPGA devices is shown. These results will be used during the design of the support for the OmpSs
extensions for FPGAs to decide the specific mechanism to use in the implementation.

The next steps that will be taken in the project will be to work and provide the implementation for the
different components that we have now designed:

- The final prototype targeting the FPGA devices, based on the DMA library to transfer data to
and from the FPGA.

- The support for distributed systems based on common tools and the XSMLL infrastructure.
- The communication layer implemented in the FPGA.

We will also evaluate the possibility to reuse some of the components implementing the communica-
tion layer, specially the DMA devices, to be used to transfer data to the accelerators in the FPGA.
This way, we can save some of the FPGA resources and fit larger accelerators on it.

References
1. Dan Bonachea; GASNet Specification, v1.1. Report No. USB/CSD-02-1207. CS Division,

EECS Department, University of California, Berkeley; October 2002;
http://gasnet.lbl.gov/CSD-02-1207.pdf

2. Javier Bueno, Xavier Martorell, Rosa M. Badia, Eduard Ayguadé, Jesús Labarta; Implement-
ing OmpSs support for regions of data in architectures with multiple address spaces. ICS
2013: 359-368 (2013).

3. Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell, Xavier
Martorell, Judit Planas; OmpSs: a Proposal for Programming Heterogeneous Multi-Core Ar-
chitectures. Parallel Processing Letters 21(2): 173-193 (2011).

4. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Version 3.0;
September 2012; http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

5. R. Giorgi, "Scalable Embedded Systems: Towards the Convergence of High-Performance and
Embedded Computing", Proc. 13th IEEE/IFIP Int.l Conf. on Embedded and Ubiquitous
Computing (EUC 2015), Oct. 2015.

6. DMA driver for AXIOM: https://git.axiom-project.eu/?p=axiom-dma
7. XSMLL API for AXIOM: https://git.axiom-project.eu/?p=XSMLL
8. OmpSs website: http://pm.bsc.es/ompss
9. COTSon website: http://cotson.sourceforge.net/
10. Argollo, E., Falcón, A., Faraboschi, P., Monchiero, M., and Ortega, D. 2009. COTSon: infra-

structure for full system simulation. SIGOPS Oper. Syst. Rev. 43, 1 (Jan. 2009), 52-61
11. Xilinx, Inc. Vivado Design Suite – HLx Edition,

http://www.xilinx.com/products/design-tools/vivado.html

