
The AXIOM-board
PART ONE - Hardware guide

Contents

1 Introduction
2 Overview
3 Configuration
4 Power supply
5 Programming Cable
6 RAM

1 Introduction

The AXIOM_ZU9EG board is based on the Zynq® UltraScale+™ MPSoC XCZU9EG-1FFC900.

2 Overview

List of the main features:

XCZU9EG-1FFC900
MPSoC;
Configuration/Booting
from QSPI;
Configuration/Booting
from SD card;
Configuration/Booting
from eMMC on
board;
Configuration/Booting
from JTAG;
Clocks
(Programmable Clock
Generator for
PS_CLK, PS/PL
transceivers, and PL-
system);
PS DDR4 64-bit
SODIMM w/ ECC;
PL DDR4
Component (32-bit,
4Gb x 2); PS GTR
assignment
DisplayPort USB3
PL GTH assignment
USB Type C
connectors
PS/PL EMIO Trace
Port
Arduino Uno R3
connector
PS MIO: UART
(using USB-to-
UART bridge)

3 Configuration

Boot Mode
 Mode Pins [0:3]

1 2 3 4

QSPI32 0 1 0 0

uSD 1 0 1 0

eMMC 1 1 0 0

JTAG 0 0 0 0

NOTE: logical value 0 refers to ON state. The switch state
reported into the picture corresponds to SD boot mode.

 LED1 PS_INIT_B Initialization completion indicator after POR. High voltage indicates completion of initialization (PL).

 LED2 PS_DONE If the LED glows red, the Zynq UltraScale+ device has configured successfully.

 LED3 USER_LED Programmable LED form PS/PL.

 LED4 PS_G_PGD If Power Good LED glows green, the power system is good.

SW2 RST_BTN# Reset button

SW3 N/A N/A

4 Power supply

12V DC 5A power supply - 2.5mm plug (positive polarity). A suitable one can be found at [1] (https://www.digimax.it/acdc-adattatori-desktop/304-ea1050am03.html)

5 Programming Cable

A programming cable for Xilinx FPGAs can be useful for JTAG boot or FPGA programming and debug, we tested a low cost compat ible one: JTAG-HS3 from digilent ([2]
(http://stor e.digilentinc.com/jtag-hs3-programming-cable/))
The JTAG connection CN15 of the board does not have mechanical polarization, so keep attention to the polarization key of the programming cable (it must be facing outside the
board - see the images below).

 RIGHT connection WRONG connection

6 RAM

DDR4 SO-DIMM: At this time we tested 4GB RAM modules. 512MBx8, CL=15 DRAM have to be used, we tested several ones eg: KVR21SE15S8/4 from Kingstone; bigger ones (but same topology and
CAS latency) can be used but, without modifications to Vivado project, 4GB will be available anyway.

Board Power Analysis

Hardware Sensor System

The board has eight INA219 chips for monitoring current and power, connected with the Zynq Ultrascale+ via I2C.SYSFS and IOCTL interfaces.

Chip Part Number: INA219 (http://www.ti.com/lit/ds/symlink/ina219.pdf)

The following rails are monitored:

Bus Label
Nominal Voltage System ID

Description (V) (*)

0.85V_INTFP PM_VCC_INTFP 0.85 0 PS full-power domain supply voltage

0.85V_VCCINT PM_VCC_INT 0.85 1 PL internal power supply

12V_ALW PM_VIN 12 2 VIN power supply

0.85V_INTFP_DDR PM_INTFP_DDR 0.85 3 PS DDR controller and PHY supply voltage

1V2_DDR_PS PM_1V2_DDR_PS 1.2 4 PS DDR supply

1.2V_DDR_PL PM_1V2_DDR_PL 1.2 5 PL DDR supply

MGTAVCC PM_MGTAVCC 0.9 6 Analog supply voltage for GTH transceiver

1.2V_MGTAVTT PM_MGTAVTT 1.2 7
Analog supply voltage for GTH transmitter and receiver

termination circuits

(*) The System ID is a conventional zero based number used to uniquely identify the chip. This number is used also as suffix of the device file descriptor
assigned at each driver instance.

Test Setting
 OS Image: XOS_v0.3_20171113 CLIENT SERVER

SW test: hwmon_scan_all.sh

Test duration: 240 s

sample

parameters 0.2 s
 time:

Client Setting Server Setting

Vivado/TestIBERT
Board setup

1. Connect USB Type C cables on CN3-
CN4-CN5-CN6 (it's important to use USB
Type C Gen 2 cables that have both lanes
wired);
2. Select JTAG boot mode
3. Connect JTAG_HS3

Running the test

1. Open Hardware manager from Vivado;

2 Select Open target;

3 Select Program device end then xczu9eg_0;

4 Choose bitstream file from your PC

($PC_folder\AXIOM_ZU9EG_IBERT\ibert_ultrascale_gth_0_10Gbps_228_229_refclk125\ibert_ultrascale_gth_0_ex.runs\impl_1\example_ibert_ultrascale_gth_0.bit)

5. Select "Auto-detect Serial I/O Links";

6. So, in Serial I/O Links panel you can see the status of transmission;

AVR8 programming

Arduino Soft Core programming

The BRAM_prog_driver allows mapping the Soft-core program hex file in RAM blocks (for instance the program memory has been mapped to
/dev/memX). We can use 32 bit AXI interface that allow, through AXI_BRAM_controller, to initiate write/read transactions from ARM-core to
BRAM of AVR8 implemented in programmable logic.

In the Figure, the main components involved on the programming of the Soft Core are colored in the following way:

Linux standard interface through which the user space can interact with the IP designed in programmable logic.

Set of commands to:

write/read to/from the program memory of the Arduino soft core
start/stop program execution on the soft core

Linux standard interface used to communicate with the IP implemented in Programmable logic.

High level function set to manage BRAM access accordingly to the IP core’s status. For example, program’s execution is stopped when
updating the program memory. Moreover it performs .hex file parsing and checksum verification.

Basic set of functions to interact with the BRAM controller.

The access to the IP takes place through a reserved memory range, through dedicated memory mapped registers.

User Space Interface

Driver: arduino.c

This driver provides an user space interface via PROCFS. The root folder is:

/proc/arduino

 This last contains the following file:

 PROC User Interface

 File Name Access Description

 erase r Erase the AVR program memory

program_memory r/w

Program the AVR program memory with the data straming from an hex file. Allows also the dumping
 of the memory.

 run r/w Control/Show the state of the execution

During the programming operation a check of the hex file is performed in order to avoid wrong data writing. The default state of the execution is
reset mode and the driver puts the execution in this state each time a dump or program operation is started.

State control
To read the current state of the execution:

root@axiom:/proc/arduino# cat run

To control the execution state:

root@axiom:/proc/arduino# echo <state> > run

Where <state> must be 1 to put the execution running, 0 to stop the execution.

Memory Erase
Write value 1 to "erase" file:

root@axiom:/proc/arduino# echo 1 > erase

After this operation the execution will be stopped in each case.

Memory Control
To dump the program memory:

root@axiom:/proc/arduino# cat program_memory

A well formatted output will be printed into the current terminal. To write a hex file into the memory:

root@axiom:/proc/arduino# cat <hex file> > program_memory

If the hex file has not a correct format the command returns an error. When this operation is started, the driver stops the e xecution state and at the end
of the operation, it automatically rester the current state.

Example

Example: memory dump

root@axiom:/proc/arduino# cat program_memory
======================================= Arduino Program Memory ==

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 | 940C 0031 940C 005F 940C 005F 940C 005F 940C 005F 940C 005F 940C 005F 940C 005F
0010 | 940C 005F 940C 005F 940C 005F 940C 005F 940C 005F 940C 005F 940C 005F 940C 005F
0020 | 940C 007F 940C 005F 940C 005F 940C 005F 940C 005F 940C 005F 940C 005F 940C 005F
0030 | 0193 2411 BE1F EFCF E0DF BFDE BFCD E010 E6A0 E0B0 ECE2 E0F6 EF0F 9503 BF0B C004
0040 | 95D8 920D 9631 F3C8 36AA 07B1 F7C9 E021 E6AA E0B0 C001 921D 30A9 07B2 F7E1 E010
0050 | E3C1 E0D0 C005 9721 2FFD 2FEC 940E 0354 33C0 07D1 F7C1 940E 01B8 940C 035F 940C
0060 | 0000 E840 E255 E060 E070 E785 E090 940C 0144 9180 0060 940E 0116 9390 006B 9380
0070 | 006A E04A E050 2F68 2F79 E785 E090 940E 02D8 EF64 E071 E080 E090 940C 00D5 921F
0080 | 920F B60F 920F 2411 932F 933F 938F 939F 93AF 93BF 9180 006D 9190 006E 91A0 006F
0090 | 91B0 0070 9130 006C E023 0F23 372D F420 9601 1DA1 1DB1 C005 E826 0F23 9602 1DA1
00A0 | 1DB1 9320 006C 9380 006D 9390 006E 93A0 006F 93B0 0070 9180 0071 9190 0072 91A0
00B0 | 0073 91B0 0074 9601 1DA1 1DB1 9380 0071 9390 0072 93A0 0073 93B0 0074 91BF 91AF
00C0 | 919F 918F 913F 912F 900F BE0F 900F 901F 9518 B72F 94F8 9160 006D 9170 006E 9180
00D0 | 006F 9190 0070 BF2F 9508 928F 929F 92AF 92BF 92CF 92DF 92EF 92FF 2EC6 2ED7 2EE8
00E0 | 2EF9 940E 00C9 2E86 2E97 2EA8 2EB9 940E 00C9 2FB9 2FA8 2F97 2F86 1988 0999 09AA
..................
1FE0 | 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
1FF0 | 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
===

Example: program the memory with code.cpp.hex file

root@axiom:/proc/arduino#cat code.cpp.hex > program_memory

Example: put execution running

root@axiom:/proc/arduino#echo 1 > run

Example: erase program memory

root@axiom:/proc/arduino#echo 1 > erase

AVR8 system communication

Arduino Soft Core to Processing System communication

Beyond AVR processor programming, it is useful to provide a mechanism to allow communication between CPU complex integrated in Zynq’s Processing system (i.e., the ARM cores) and the AVR Soft Core embedded in
Zynq’s Programmable Logic (Figure 5). The communication between user application and Arduino Soft Core is provided in a standard way, with a kernel driver and a set of APIs. The first one (see yellow block in Figure 6) has
the double purpose to implement the communication interface between the Kernel and the Soft Core and the communication inte rface between the kernel space and the user space, provided as set of primitives. The second one
(see blue block in the picture below) is a dynamic library, which uses these primitives and implements a higher set of functi ons that can be called by user applications. The two main interfaces (user space/kernel space and
kernel/Soft Core) are asynchronous, so the driver implements a synchronization mechanism that queues the tasks to perform. Th e priority can be assigned at run-time or in a static way, based on the specific operation. In order to
use the Soft Core as Slave device and allow it to notify events to the master, the driver handles an interrupt routine (ISR) in which the slave notification is decoded and the message (from the slave) is passed to the u ser space via
kernel event system. In this way, an asynchronous communication from the slave to the user application is provided.

 Asynchronous communication with the Arduino IP Protocol management with the Arduino IP Internal scheme of communication block

Note:

buffer size: 64 bit.

IN_BUFFER: send data from PS to AVR8.
OUT_BUFFER: send data from AVR8 to PS.

Linux standard interface through which the user space can interact with the IP designed in program mable logic
Set of to write/read to/from the bi-direction buffer and a set of commands to manage the FIFO controller
Linux Standard interface used into the custom code to interact with the IP designed in programmable logic
High level function set. According to the current state of the controller, it allows or disable some user function
Basic set of functions to interact with the FIFO controller
The access to the IP takes place through a reserved memory range, through dedicated memory mapped registers.

AVR8 Side

Register List:

Name Address Description

Rx_reg 0x1FF0 Provides data from PS

Tx_reg 0x1FF1 Sends data to PS

INT_status_reg 0x1FF2 Interrupt status register

Control_reg 0x1FF3 Control register

Mask_reg 0x1FF4 Interrupt enable register

Register Mapping:

INT_status Register

Bits Name Access Description

7-4 N/A N/A N/A

3 Rxsmit_ready_IN_buffer ROC IN_buffer has data to provide

2 Rno_more_data_IN-buffer ROC IN_buffer no more data to provide

1 Wbuffer_busy_OUT_buffer ROC OUT_buffer busy

0 Wbuffer_empty_OUT_buffer ROC OUT_buffer empty

 Control Register

Bits Name Access Description

7-3 N/A N/A N/A

2 Wbuffer_flush_OUT_buffer WO OUT_buffer data flush

1 Wbuffer_en_OUT_buffer WO OUT_buffer write enable

0 Rbuffer_en_IN_buffer WO IN_buffer read enable

 Mash Register

Bits Name Access Description

7-4 N/A N/A N/A

3 Rxsmit_ready_IN_buffer WO Enable flag of relative interrupt

2 Rno_more_busy_OUT_buffer WO Enable flag of relative interrupt

1 Wbuffer_busy_OUT_buffer WO Enable flag of relative interrupt

0 Wbuffer_empty_OUT_buffer WO Enable flag of relative interrupt

 Arduino Interface: In order to use the communication system an Arduino library is provided.
 Library name: PSComm
 Heder to include: include "PSCOMMClass.h"

 Control Register

 Name Syntax Parameters Returns Description

 begin begin() none none initializes the buffer interface. To call before any buffer operation.

 end end() none none Reset the buffer interface. To call after any buffer operation.

 write8 write8() uint8_t data: data to read none Writes a 8bit data into the buffer and flush all.
 write16 write16() uint16_t data: data to read none Writes a 16bit data into the buffer and flush all.
 write32 write32() uint32_t data: data to read none Writes a 32bit data into the buffer and flush all.
 write64 write64() uint64_t data: data to read none Writes a 64bit data into the buffer and flush all.
 hasDataToRead hasDataToRead() none 0 or 1 Return 1 if there are some data to read.
 noMoreData noMoreData() none 0 or 1 Return 1 if the IN_BUFFER is empty.
 read8 read8() uint8_t *data: point to data to store the read value none Read 8bit of data from the buffer.
 read16 read16() uint16_t data: point to data to store the read value none Read 16bit of data from the buffer.
 read32 read32() uint32_t data: point to data to store the read value none Read 32bit of data from the buffer.
 read64 read64() uint64_t data: point to data to store the read value none Read 64bit of data from the buffer.

PS Side

Note:

There are two 32bit slot.
The data are available to the other side only when both slot are written.
The data are immediately readable by other side if the flush flag is set.

Register List: BASE_ADDR = 0x80030000

Name Address Description

Rx_reg BASE_ADDR + 0x00 Provides data from PS

Tx_reg BASE_ADDR + 0x04 Sends data to PS

INT_status_reg BASE_ADDR + 0x08 Interrupt status register

Control_reg BASE_ADDR + 0x0c Control register

Mask_reg BASE_ADDR + 0x10 Interrupt enable register

Register Mapping:

 INT_status Register

 Bits Name Access Description

 31-4 N/A N/A N/A

 3 Rxsmit_ready_OUT_buffer ROC OUT_buffer has data to provide

 2 N/A N/A N/A

 1 Wbuffer_busy_IN_buffer ROC IN_buffer busy

 0 N/A N/A N/A

 Control Register

 Bits Name Access Description

 31-1 N/A N/A N/A

 0 Wbuffer_flush_IN_buffer WO IN_buffer data flush

 Mash Register

 Bits Name Access Description

 31-4 N/A N/A N/A

 3 Rxsmit_ready_OUT_buffer WO Enable flag of relative interrupt

 2 N/A N/A N/A

 1 Wbuffer_busy_IN_buffer WO Enable flag of relative interrupt

 0 N/A N/A N/A

User Space Interface Driver: fifo.c

This driver provides an user space interface via PROCFS. The root folder is:

/proc/fifo

This last contains the following file:

PROC User Interface

File Name Access Description

regs_dump r Dump of all registers (not included out and in buffer)

ien w Interrupt enable flags (interrupt mask)

wb_flush r/w Show/Control flush flags

out w Write into the OUT_buffer

in r Read from the IN_buffer

Example:

Dump registers

root@axiom:/proc/fifo# cat regs_dump
============= FIFO REGS =============
Control : 0x00000000
Inter. en: 0x00000000
Int state: 0x00000000
TX data : 0x00000000

Write data:

root@axiom:/proc/fifo# echo 0xFFFFFFFF > ien

root@axiom:/proc/fifo# echo 0x1 > out
root@axiom:/proc/fifo# echo 0x2 > out

Read data:

root@axiom:/proc/fifo# echo 0xFFFFFFFF > ien
root@axiom:/proc/fifo# cat in
0x00000001

Enable flushing:

root@axiom:/proc/fifo# echo 1 > wb_flush

Arduino system

Contents

1 Arduino Function Support
2 Arduino Library Support
3 Arduino IDE
4 Arduino PWM Support and Examples
5 Example: Analog Voltage displayed in Linux
6 Example: PIR with LED indication
7 Example: SPI NOR Flash write/read
8 Example: Math, Trigonometry, Characters, Random Numbers, Bits and Bytes function sets

1 Arduino Function Support

Reference: Arduino functions (https://www.arduino.cc/reference/en/)

Function Status Note Function Status Note

 Digital I/O Characters

digitalRead() Supported isAlpha() Supported

digitalWrite() Supported isAlphaNumeric() Supported

pinMode() Supported isAscii() Supported

 Analog I/O isControl() Supported

analogRead() Supported isDigit() Supported

analogReference() Not supported isGraph() Supported

analogWrite() Supported isHexadecimalDigit() Supported

 Zero, Due & MKR Family isLowerCase() Supported

analogReadResolution() NC No compatible board isPrintable() Supported

analogWriteResolution() NC No compatible board isPunct() Supported

 Advanced I/O isSpace() Supported

noTone() Supported isUpperCase() Supported

pulseIn() Supported isWhitespace() Supported

pulseInLong() Supported Random Numbers

shiftIn() Supported random() Supported

shiftOut() Supported randomSeed() Supported

tone() Supported Bits and Bytes

 Time bit() Supported

delay() Supported bitClear() Supported

delayMicroseconds() Supported bitRead() Supported

pulseInLong() Supported bitSet() Supported

micros() Supported bitWrite() Supported

millis() Supported highByte() Supported

Math

lowByte()

Supported

 abs() Supported External Interrupts

 constrain() Supported attachInterrupt() Supported

 map() Supported detachInterrupt() Supported

 max() Supported Interrupts

 min() Supported interrupts() Supported

 pow() Supported noInterrupts() Supported

 sq() Supported Communication

 sqrt() Supported serial Supported

 Trigonometry stream Supported

 cos() Supported USB

 sin() Supported Keyboard NC No compatible board

 tan() Supported Mouse NC No compatible board

2 Arduino Library Support

Reference: Arduino libraries (https://www.arduino.cc/en/Reference/Libraries)

Function Status Note

SPI Full supported

PSCOMM Full supported
AXIOM library for custom communication (see here (https://wiki.axiom-project.eu/index.php/WP6_-_ARCHITECTURE_IMPLEME

NTATION/BSP/AVR8_system_communication))

3 Arduino IDE

Into the File Sytem generated with the XGenImage tool (see here (https://wiki.axiom-project.eu/index.php/WP6_-_ARCHITECTURE_IMPLEMENTATION/BSP/XGenImage)) a version of Arduino IDE is already present. It is a
AARCH64 compatible version and is aligned with the libc for ARV present into Ubuntu 16.04.
Current Arduino IDE version: 1.5.2

The AVR8 IP is denomined, into the IDE, as "AXIOM AVR8 IP" and is present into the board list of the software. So the user mu st to select the correct item from the board list before write a sketch. In this manner all features of
the IP will be available.

The Serial Monitor is available over the default serial port ttyACM0.

Arduino IDE 1.5.2 About

AXIOM AVR IP board
support

Arduino IDE in AXIOM Ubuntu 16.04 AXIOM AVR IP board selection

4 Arduino PWM Support and Examples

Tag:

analogWrite;
PWM;

Reference: Atmega103 ref manual (https://wiki.axiom-project.eu/images/8/85/Doc0945.pdf)

There are two independent PWM controller available through Arduino connector. This is the combination:

Controller Pin Num.

PWM0 3

PWM2 6

(Note: PWM1 not available)

The duty cycle of the signal can by controlled via the standard analogWrite() Arduino's function. In addition, it is possible :

to change the default clock frequency from a set of frequencies, depending on the controller in use;
to invert the polarity of the signal (the default one is non-inverted, so the duty cycle means duration of the signal high).

These two features are not implemented by standard Arduino's function set, so the user have to directly acts at low lever code and the register to use is the TCCRx (Time r/Counter Contol Register), where x is 0 for the PWM0
and 2 for the PWM2. The clock source of the controller come from a Prescaler, which provide seven different clock frequencies for PWM0 and five for PWM2. The selection of the frequency take place through a three-bit
selector, corresponding to the first three bit of the TCCRx register: CS02 (MSB), CS01, CS00 (LSB). Follow the association bits' value and PWM frequency:

PWM0
CS02 CS01 CS00 Clock frequency

0 0 1 32 KHz

0 1 0 4 KHz

0 1 1 1 KHz

1 0 0 500 Hz

1 0 1 250 KHz

1 1 0 125 KHz

1 1 1 31.25 Hz

PWM2
CS02 CS01 CS00 Clock frequency

0 0 1 32 KHz

0 1 0 4 KHz

0 1 1 500 Hz

1 0 0 125 Hz

1 0 1 31.25 Hz

Example: set PWM0 to 1KHz

TCCR0 &= 0xF8;
TCCR0 |= 0x3; // to set clk to 1KHz

Example: set PWM0 non-inverted

TCCR0 &= (0x3 << 4);
TCCR0 |= (0x2 << 4);

Example: set PWM0 inverted

TCCR0 |= (0x3 << 4);

Example: set PWM0 @ 32KHz, 30% duty, not inverted

int pinPWM = 3;

void setup() {

TCCR0 &= 0xF8;
TCCR0 |= 0x1;

}
void loop() {

analogWrite (pinPWM, 80);
for (;;);

}

 PWM0 @32KHz,30% duty, non inverted PWM0 @32KHz,30%, duty, inverted PWM0 @4KHz,30% duty, non inverted

5 Example: Analog Voltage displayed in Linux

Tag:

AnalogRead;
Send data from AVR8 to PS

A Trimmer is connected to the ADC[4] of Arduino. The sketch reads the Voltage as result of a resistor partition and sends thi s value to the PS. At PS side, there is a python script witch reads the values sent by the AVR,
through the buffer, and displays them in a window as show in the pictures below.

#include "PSComm.h"

int analogPin = 4;
int val = 0;
int val1 = 0;

void setup() {
PSComm.begin ();
val = 0;
val1 = 0;
delay (500);
}

void loop() {

val = analogRead(analogPin);
if (val != val1) {
PSComm.write16 ((uint16_t)val);
val1 = val;
delay(200);

} else {
delay(100);

}
}

Arduino IDE in AXIOM Ububtu 16.04

6 Example: PIR with LED indication

Tag:

pinMode;
digitalRead;
digitalWrite;

A PIR sensor is connected to the Arduino's shield in he follow mode: - Pin 6 -> sensor's signal (active Low); - Pin 8 Power group -> 3.3V - Pin 2 Power proup -> GND When the PIR sensor recognises a movement the four leds
of the shield will be sequentialy put to ON. Otherwise, leds are all OFF.

Download demo video (https://wiki.axiom-project.eu/images/c/c8/Arduino_example_PIR.mp4.zip)

#define DELAY_LED_ON 100

int pinPIR = 6;
int pinLED1 = 4;
int pinLED2 = 7;
int pinLED3 = 8;
int pinLED4 = 12;
int statePIR;
void setup() {
pinMode (pinPIR, INPUT);
pinMode (pinLED1, OUTPUT);
pinMode (pinLED2, OUTPUT);
pinMode (pinLED3, OUTPUT);
pinMode (pinLED4, OUTPUT);
digitalWrite (pinLED1, 0);
digitalWrite (pinLED2, 0);
digitalWrite (pinLED3, 0);
digitalWrite (pinLED4, 0);

}
void setLeds () {
digitalWrite (pinLED1, 1);
delay (DELAY_LED_ON);
digitalWrite (pinLED2, 1);
delay (DELAY_LED_ON);
digitalWrite (pinLED3, 1);
delay (DELAY_LED_ON);
digitalWrite (pinLED4, 1);

}
void clearLeds () {
digitalWrite (pinLED1, 0);
digitalWrite (pinLED2, 0);
digitalWrite (pinLED3, 0);
digitalWrite (pinLED4, 0);

}
void loop() {
static int state_old = LOW;
statePIR = !digitalRead (pinPIR);

if (statePIR == LOW) {
clearLeds ();

} else {
if (state_old != statePIR)
{ setLeds ();

}
}
state_old = statePIR;
delay (200) ;

}

AXIOM board with Relay Shield and PIR sensor

Relay Shield and PIR sensor

7 Example: SPI NOR Flash write/read

Tag:

SPI library;
Serial Port;
NOR SPI Flash;

As showed into picture below, a NOR flash is connected with the AVR8 through SPI bus. The sketch read the vendor and device I Ds, erase the whole memory and write the first twelve values of the Fibonacci's series. The values
are read and showed via Serial Monitor.
External document

Data Sheet of SST25VF032B (http://ww1.microchip.com/downloads/en/DeviceDoc/20005045C.pdf)

#include <SPI.h> (continue ...)
 SPI.transfer(addr1);
byte v_id; // vendor ID SPI.transfer(addr0);
byte d_id; // device ID *data = SPI.transfer(0x00);
byte dr, dw, state; SPI.disableChip ();
int addr = 0x8; }

void setup() { void chip_erase () {
SPI.begin(); SPI.enableChip ();
Serial.begin(9600); SPI.transfer(0x01);

} SPI.transfer(0x00);

void get_id (byte *vendor_id, byte *device_id) {
SPI.disableChip ();

SPI.enableChip (); SPI.enableChip ();
SPI.transfer(0x90); SPI.transfer(0x06);
SPI.transfer(0x00); SPI.disableChip ();
SPI.transfer(0x00); SPI.enableChip ();

Schematic Arduino + SPI Flash NOR (build with Frizzing)

SPI.transfer(0x00);
*vendor_id = SPI.transfer(0x00);
*device_id = SPI.transfer(0x00);
SPI.disableChip ();

}
void byte_write (int addr, byte data)
{ byte addr0; //LSB
byte addr1;
byte addr2; //MSB
addr0 = addr & 0xFF;
addr1 = (addr >> 8) & 0xFF;
addr2 = (addr >> 16) & 0xFF;
SPI.enableChip ();
SPI.transfer(0x01);
SPI.transfer(0x00);
SPI.disableChip ();
SPI.enableChip ();
SPI.transfer(0x06);
SPI.disableChip ();

SPI.enableChip ();
SPI.transfer(0x02);
SPI.transfer(addr2);
SPI.transfer(addr1);
SPI.transfer(addr0);
SPI.transfer(data);
SPI.disableChip ();

}
void get_status_reg (byte *state)
{ SPI.enableChip ();
SPI.transfer(0x05);
*state = SPI.transfer(0x00);
SPI.disableChip ();

}
void byte_read (int addr, byte *data)
{ byte addr0; //LSB
byte addr1;
byte addr2; //MSB
addr0 = addr & 0xFF;
addr1 = (addr >> 8) & 0xFF;
addr2 = (addr >> 16) & 0xFF;
SPI.enableChip ();
SPI.transfer(0x03);
SPI.transfer(addr2);
(continue ...)

SPI.transfer(0xC7);
SPI.disableChip ();

}
#define N_WR 12
void loop() {
int i;
int n1 = 1;
int n2 = 1;
get_id (&v_id, &d_id);
Serial.println (" ");
Serial.println ("-----------------------");
Serial.print ("Vendor ID: ");
Serial.println (v_id, HEX);
Serial.print ("Device ID: ");
Serial.println (d_id, HEX);
Serial.println ("-----------------------");
Serial.println (" ");
Serial.println ("Chip erase...");
Serial.println (" ");
chip_erase ();
addr = 0x0;
dw = 1;
Serial.print ("Write first ");

Serial.print (N_WR);
Serial.print (" of the Fibonacci\'s series");
for (i = 0 ; i < N_WR ; i++) {
if (i > 1) {
n2 = dw;
dw += n1;
n1 = n2;

} else dw
= 1;

byte_write (addr + i, dw);
delay (10);

}
Serial.println (" ");
for (i = 0 ; i < N_WR ; i++) {
byte_read (addr + i, &dr);
Serial.print ("Byte read at address ");
Serial.print (addr + i);
Serial.print (" : ");
Serial.println (dr);

}
delay (5000);

}

Screenshot of Arduino IDE (with the running program) and Serial port monitor with relative output

Oscilloscope screenshot of the SPI signals during the reading of the vendor and device IDs

8 Example: Math, Trigonometry, Characters, Random Numbers, Bits and Bytes function sets

Tag:

Math functions;
Trigonometry functions;
Characters functions;
Random Numbers functions;
Bits and Bytes functions;
Serial Port.

The sketch simple shows the usage of all functions of the mentioned groups of the "Language Reference" of Arduino. All the re sults of those functions are shown via terminal emulation program, through Serial Port (in this
regard, a UART-to-USB adapter was used).

void setup() {
Serial.begin(9600);
Serial.println("");
Serial.println("");
Serial.println("######### Math functions test #########");
Serial.print("abs(-2) = ");
Serial.println(abs(-2));
Serial.print("constrain of 150 between 10 and 100 =
"); Serial.println(constrain(150, 10, 100));
Serial.print("constrain of 1 between 10 and 100 =
"); Serial.println(constrain(1, 10, 100));
Serial.print("map 100 in conversion from [0, 1023] to [0, 255] =
"); Serial.println(map(100, 0, 1023, 0, 255));
Serial.print("max between 10 and 100 =
"); Serial.println(max(10, 100));
Serial.print("min between 10 and 100 =
"); Serial.println(min(10, 100));
Serial.print("3 raised to power of 3 =
"); Serial.println(pow(3, 3));
Serial.print("square root of 25 = ");

.....
Serial.print("'c' is lower case = ");
Serial.println(isLowerCase('c'));
Serial.print("'C' is lower case = ");
Serial.println(isLowerCase('C'));
Serial.print("'c' is upper case = ");
Serial.println(isUpperCase('c'));
Serial.print("'C' is upper case = ");
Serial.println(isUpperCase('C'));
Serial.print("'C' is punctuation = ");
Serial.println(isPunct('C'));
Serial.print("',' is punctuation = ");
Serial.println(isPunct(','));
Serial.print("'c' is the space character = ");
Serial.println(isSpace('c'));
Serial.print("' ' is the space character = ");
Serial.println(isSpace(' '));
Serial.print("' ' is a white space = ");
Serial.println(isWhitespace(' '));
Serial.print("'\\n' is a white space = ");

Serial.println(sqrt(25));
Serial.print("square of 20 = ");
Serial.println(square((double)20));

Serial.println("");
Serial.println("");
Serial.println("######### Trigonometry functions test #########");

Serial.print("cos of 0.5 rad = ");
Serial.println(cos(0.5));
Serial.print("sin of 0.5 rad = ");
Serial.println(sin(0.5));
Serial.print("tan of 0.5 rad = ");
Serial.println(tan(0.5));
Serial.println("");
Serial.println("");
Serial.println("######### Characters functions test #########");

Serial.print("'3' is an alpha = ");
Serial.println(isAlpha('3'));
Serial.print("'c' is an alpha = ");
Serial.println(isAlpha('c'));
Serial.print("'3' is an alphaNumeric =
"); Serial.println(isAlphaNumeric('3'));
Serial.print("'@' is an alphaNumeric =
"); Serial.println(isAlphaNumeric('@'));
Serial.print("'@' is ASCII = ");
Serial.println(isAscii('@'));
Serial.print("'3' is an digit = ");
Serial.println(isDigit('3'));
Serial.print("' ' is a graph = ");
Serial.println(isGraph(' '));
Serial.print("' ' can be printed = ");
Serial.println(isPrintable(' '));

.....

Serial.println(isWhitespace('\n'));
Serial.println("");
Serial.println("");
Serial.println("######### Random Numbers functions test #########");

Serial.print("random value between 10 and 100 = ");
randomSeed(50);
Serial.println(random(10, 100));
Serial.println("");
Serial.println("");
Serial.println("######### Bits and Bytes functions test #########");

int val = 0xAC;

Serial.print("clear bit three of 0xAC = ");
val = 0xAC;
bitClear(val, 2);
Serial.println(val, HEX);
Serial.print("set bit two of 0xAC = ");
val = 0xAC;
bitSet(val, 1);
Serial.println(val, HEX);
Serial.print("value of bit one of 0xAC = ");
val = 0xAC;
Serial.println(bitRead(val, 0), HEX);
Serial.print("set to 1 the first bit of 0xAC = ");
val = 0xAC;
bitWrite(val, 0, 1);
Serial.println(val, HEX);
Serial.print("high byte of 0xABCD = ");
val = 0xABCD;
Serial.println(highByte(val), HEX);
Serial.print("low byte of 0xABCD = ");
val = 0xABCD;
Serial.println(lowByte(val), HEX);

}
void loop() {

}

Serial Port output

FirstBoot

Contents

1 Introduction
2 Board Setting
3 Getting BSP components
4 Creating SD Card

Introduction

All needed materials are provided via remote sources.
Moreover a Linux distribution is needed since all provided tools work under Linux. The tested distributions are Debian like (Ubuntu and last Debian
release).
The startup procedure described below does not need any compile procedure, the download of the source code of the BSP and the toolchain is
not needed.
You just need to download pre-compiled image and FileStystem, as outlined below.

Board Setting

To properly setting the board, refer to the documentation AXIOM board (https://wiki.axiom-project.eu/index.php/WP6_-
_ARCHITECTURE_IMPLEM ENTATION/AXIOM_board#Programming_Cable)

Getting BSP components

To obtain the materials to create a bootable BSP, refer to the documentation Getting BSP (https://wiki.axiom-project.eu/index.php/WP6_-
_ARCHITECT URE_IMPLEMENTATION/BSP/ComponentsAndSources#Getting_the_pre-built_BSP)

Creating SD Card

Preparing the SD card
Steps to prepare the SD card for PetaLinux SD card ext filesystem boot:

1. The SD card is formatted with two partitions using a partition editor such as gparted or fdisk.
2. The first partition should be at least 40MB in size and formatted as a FAT32 filesystem. Ensure that there is 4MB of free space preceding the

partition. The first partition will contain the bootloader, u-boot, devicetree and kernel images. Label this partition as BOOT.
3. The second partition should be formatted as an ext4 filesystem and can take up the remaining space on the SD card. This par tition will store

the system root filesystem. Label this partition as rootfs.

Flashing the SD card
Note: plnx-proj-root is the root folder of the pre-built AXIOM BSP.
Steps to Boot a PetaLinux Image on Hardware with SD Card:

1. Mount the SD card on your host machine.
2. Copy the following files from <plnx-proj-root>/pre-built/linux/images/ into the root directory of the first partition which is in FAT32

format in the SD card: BOOT.BIN and image.ub.
3. Extract the downloaded FileSystem archive into the second partition witch is in EXT4 format in the SD card.
4. Connect the serial port on the board to your workstation.
5. Open a console on the workstation and start the preferred serial communication program (e.g. kermit, minicom, gtkterm) with t he baud

rate set to 115200 on that console.
6. Power off the board.
7. Set the boot mode of the board to SD boot. Refer to the board documentation for details.
8. Plug the SD card into the board.
9. Power on the board

Actually, the boot environment is working in progress. So to properly boot the system from uSD, the u-boot variables must to be changed with
the following command:

setenv bootargs 'earlycon=cdns,mmio,0xFF000000,115200n8 root=/dev/mmcblk1p2 rw rootwait console=ttyPS0,115200'
setenv bootcmd 'mmc dev 1 && mmcinfo && fatload mmc 1:1 ${clobstart} ${kernel_img} && bootm' saveenv

Note that this step is temporary until the environment configuration command (bconfig) will be released.

10. Watch the serial console, you will see the boot messages similar to the following:

Release 2016.3 Feb 24 2017 - 08:56:12
Platform: Silicon (3.0), Cluster ID 0x80000000
Running on A53-0 (64-bit) Processor, Device Name: XCZU9EG
Processor Initialization Done
================= In Stage 2 ============
SD1 Boot Mode
SD: rc= 0
File name is 1:/BOOT.BIN
Multiboot Reg : 0x0
Image Header Table Offset 0x8C0
*****Image Header Table Details********
Boot Gen Ver: 0x1020000
No of Partitions: 0x5
Partition Header Address: 0x280
Partition Present Device: 0x0
Initialization Success
======= In Stage 3, Partition No:1 =======
UnEncrypted data Length: 0x65216F
Data word offset: 0x65216F
Total Data word length: 0x65216F
Destination Load Address: 0xFFFFFFFF
Execution Address: 0x0
Data word offset: 0x7B00
Partition Attributes: 0x20
Destination Device is PL, changing LoadAddress
Bitstream download to start now
DMA transfer done
PL Configuration done successfully
Partition 1 Load Success
======= In Stage 3, Partition No:2 =======
UnEncrypted data Length: 0x1800
Data word offset: 0x1800
Total Data word length: 0x1800
Destination Load Address: 0xFFFEA000
Execution Address: 0xFFFEA000
Data word offset: 0x659C70
Partition Attributes: 0x107
Partition 2 Load Success
======= In Stage 3, Partition No:3 =======
UnEncrypted data Length: 0x8
Data word offset: 0x8
Total Data word length: 0x8
Destination Load Address: 0xFFFF0000
Execution Address: 0x0
Data word offset: 0x65B470
Partition Attributes: 0x107
Partition 3 Load Success
======= In Stage 3, Partition No:4 =======
UnEncrypted data Length: 0x1FF8C
Data word offset: 0x1FF8C
Total Data word length: 0x1FF8C
Destination Load Address: 0x8000000
Execution Address: 0x8000000

Data word offset: 0x65B480
Partition Attributes: 0x104

Partition 4 Load Success
All Partitions Loaded
================= In Stage 4 ============
Protection configuration applied
ATF running on XCZU9EG/silicon v3/RTL5.1 at 0xfffea000
NOTICE: BL31: Secure code at 0x0
NOTICE: BL31: Non secure code at 0x8000000
NOTICE: BL31: v1.2(release):5d8a33b
NOTICE: BL31: Built : 08:56:19, Feb 24 2017

U-Boot 2016.07-gac66543-dirty (Feb 24 2017 - 08:57:14 +0100) AXIOM ZynqMP ZU9EG

I2C: ready
DRAM: 4 GiB
EL Level: EL2
Chip ID: xczuunknown
MMC: sdhci@ff160000: 0, sdhci@ff170000: 1
SF: Detected N25Q512A with page size 512 Bytes, erase size 128 KiB, total 128 MiB
In: serial
Out: serial
Err: serial
Net: ZYNQ GEM: ff0b0000, phyaddr 0, interface rgmii-id
eth0: ethernet@ff0b0000
Hit any key to stop autoboot:

…….

Ubuntu 16.04 LTS secolnx01 ttyPS0

secolnx01 login:

PetalinuxTool

Contents

1 Notice
2 Introduction
3 Download Installation Package
4 Prerequisites
5 Installation Tool
6 Getting to use Petalinux
7 PetaLinux commnads

7.1 petalinux-config Tool
7.2 petalinux-package Tool
7.3 Other tool

1 Notice

This page provides the desctiption of a sub-set of the PetaLinux's commands, useful to the usage of the AXIOM BSP. For more information, pleas e
refer to Xilinx documents about Petalinux 3016.3.

2 Introduction

PetaLinux Tools provide a simple and fast method to build and deploy Linux-based software on Xilinx Zynq UltraScale+ MPSoC and
MicroBlaze devices. With PetaLinux, you can:

Build and configure Linux components; Linux kernel, u-boot and file system, for Zynq UltraScale+ MPSoC and MicroBlaze based designs
Easily synchronize your Linux software platform and hardware platform in a single step
Easily target and migrate your Linux user application to Zynq UltraScale+ MPSoC or MicroBlaze based Linux platform
Quickly get started with building Linux-based software on Xilinx and partner development boards using the pre-built Board Support Packages
(BSPs)

Test your Zynq UltraScale+ MPSoC or MicroBlaze Linux system without any hardware in a virtual machine environment using QEMU

3 Download Installation Package

The actual version of Petalinux Tool is the 2016.3 one. You can download PetaLinux installation package directly from Xilinx Downloads page
(https:// www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/archive.html).
(N.B. The download require autetication. So please, if needed, regist own account form Xilinx Account Page
(https://www.xilinx.com/registration/create -account.html))

Download package: petalinux 2016.03 (https://www.xilinx.com/member/forms/download/xef.html?filename=petalinux-v2016.3-final-installer.run
&akdm=1)

(N.B. The used Petalinux installation package is also available into AXIOM server: downlaod link (https://wiki.axiom-project.eu/index.php/WP6_-
_AR CHITECTURE_IMPLEMENTATION/BSP/ComponentsAndSources) - requires user access -)

4 Prerequisites

This section lists the requirements for the PetaLinux Tools Installation:

Minimum workstation requirements:

4 GB RAM (recommended minimum for Xilinx tools)
Pentium 4 2GHz CPU clock or equivalent
20 GB free HDD space
Supported OS:

RHEL 6.6/6.7/7.1/7.2 (64-bit)
CentOS 7.1 (64-bit)
SUSE Enterprise 12.0 (64-bit)
Ubuntu 14.04.3 (64 bit)

• You need to have root access to perform some operations. • PetaLinux requires a number of standard development tools and libr aries to be installed on
your Linux host workstation. Please install the libraries and tools listed in the following table on your host Linux. You must install the appropriate 32-
bit compatible libraries due to some tools such as toolchains are 32bit executables.
The table below describes the required packages, and how to install them on different Linux workstation environments.

Tool/Library CentOS 7.1 RHEL 6.6 RHEL 6.7 RHEL 7.2 SuSE 12.0 RHEL 7.2

Ubuntu
 14.04

 dos2unix dos2unix 6.0.3 dos2unix 3.1- dos2unix 3.1- dos2unix 6.0.3 dos2unix 6.0.3 dos2unix 6.0.4 tofrodos
 37 37 1.7.13
 ip iproute 3.10.0 iproute 2.6.32 iproute 2.6.32 iproute 3.10.0 iproute 3.10.0 iproute2 iproute2

 gawk gawk 4.0.2 gawk 3.1.7 gawk 3.1.7 gawk 4.0.2 gawk 4.0.2 gawk 4.1.0 gawk 4.0.1

 gcc gcc 4.8.3 gcc 4.4.7 gcc 4.4.7 gcc 4.8.3 gcc 4.8.5 gcc 4.8 gcc 4.8

 git git 1.8.3 git 1.7.1 git 1.7.1 git 1.8.3 git 1.8.3 git 1.7.1 or above git 1.7.1 or
 above
 make make 3.81 make 3.81 make 3.81 make 3.82 make 3.82 make 4.0 make 3.81

 netstat net-tools 2.0 net-tools 1.60 net-tools 1.60 net-tools 2.0 net-tools 2.0 net-tools net-tools

ncurses devel

ncurses-devel ncurses-devel ncurses-devel ncurses-devel ncurses-devel
ncurses-devel

libncurses5-
 5.9-13 5.7-3 5.7-4 5.9-13 5.9-13 dev

tftp server tftp-server tftp-server tftp-server tftp-server tftp-server

atftp or yast2-
tftpd tftp-server

zlib devel

zlib-devel zlib-devel zlib-devel zlib-devel
zlib-devel 1.2 zlib-devel zlib1g-dev 1.2.7 1.2.3 1.2.3 1.2.7

openssl devel

openssl-devel openssl-devel openssl-devel openssl-devel openssl-devel
libopenssl-devel libssl-dev 1.0 1.0 1.0 1.0 1.0

 flex flex 2.5.37 flex 2.5.35 flex 2.5.35 flex 2.5.37 flex 2.5.37 flex flex

 bison bison-2.7 bison-2.4.1 bison-2.4.1 bison-2.7.4 bison-2.7.4 bison bison

libselinux

libselinux libselinux libselinux libselinux libselinux
libselinux 2.3.2 libselinux1 2.2.2 2.0.94 2.0.94 2.2.2 2.2.2

5 Installation Tool

PetaLinux Tool has not a specific installation folder. You can select the target folder during the installation procedure. Infact, the insta ll accepts
as argument the root installation folder.
Without any options, the installer will installl as a subdirectory of the current directory.

E.g. To specify the "/opt/" folder as installation folder:

$./petalinux-v2016.3-final-installer.run /opt/

N.B. Since the initial checking procedure, performed by the install will take you many time, please be sure to have the writing right for the specified
(or current) installation folder.

This is the output of the installation procedure:

$ mkdir /opt/petalinux-v2016.3
$./petalinux-v2016.3-final-installer.run /opt/petalinux-
v2016.3 INFO: Checking installer checksum...
INFO: Extracting PetaLinux installer...
INFO: Installing PetaLinux...
INFO: Checking PetaLinux installer integrity...
INFO: Extracting Installation files...

LICENSE AGREEMENTS

PetaLinux SDK contains software from a number of sources. Please review
the following licenses and indicate your acceptance of each to continue.

You do not have to accept the licenses, however if you do not then you may
not use PetaLinux SDK.

Use PgUp/PgDn to navigate the license viewer, and press 'q' to close

Press Enter to display the license agreements
Do you accept Xilinx End User License Agreement? [y/N] > y
Do you accept Webtalk Terms and Conditions? [y/N] > y
Do you accept Third Party End User License Agreement? [y/N] > y
INFO: Checking installation environment requirements...
INFO: Checking free disk space
INFO: Checking installed tools
INFO: Checking installed development libraries
INFO: Checking network and other services
INFO: Installing PetaLinux SDK to "/opt/petalinux-v2016.3/."
INFO: PetaLinux SDK has been installed to /opt/petalinux-v2016.3/.
INFO: Installing PetaLinux Yocto SDK to "/opt/petalinux-v2016.3/./tools/yocto-sdk"...
Build tools installer version 2016.3
====================================
You are about to install the SDK to "/opt/petalinux-v2016.3/tools/yocto-sdk". Proceed[Y/n]? Y
Extracting SDK........done
Setting it up...done
INFO: PetaLinux Yocto SDK has been successfully installed.

6 Getting to use Petalinux

Before each usage of the tool, you have to run the setup script in order to have the right environment. This last describs th e folder (with absolute path)
of the single runnable command used by te tool. In the following, the single main co mmands will be described.

$ cd /opt/petalinux-v2016.3
$. ./settings.sh
PetaLinux environment set to '/opt/petalinux-
v2016.3' WARNING: /bin/sh is not bash!
bash is PetaLinux recommended shell. Please set your default shell to bash.
INFO: Checking free disk space
INFO: Checking installed tools
INFO: Checking installed development libraries
INFO: Checking network and other services

This is the environment added with the execution of the script above:

$ export | grep -i petalinux
declare -x PATH="/opt/petalinux-v2016.3/tools/linux-i386/petalinux/bin:/opt/petalinux-v2016.3/tools/common/petalinux/bin:/opt/petalinux-v2016.3/tools/linux-i386/ micr
declare -x PETALINUX="/opt/petalinux-v2016.3"
declare -x PETALINUX_VER="2016.3"
declare -x PWD="/opt/petalinux-v2016.3"

N.B. The new environment is volatile: it is present only for the current session. To manage the BSP in various terminal session, you have to run the
same script for each of them.

7 PetaLinux commnads

Follow a brief description of used command tool.

petalinux-config Tool

Allows the user to customize the specified project. It is used for two main pourposes:

initialize (or update) the project to reflect the specified hardware
configuration customize the single components of the BSP (kernel, u-boot, ...)

The table below details the main available options for the petalinux-config tool.

Option Function Description
Value default
Range Value

--get-hw-description PATH
Initialize or update the hardware configuration for the PetaLinux project. Mutually user-

none exclusive with -c. specified

Configured the specified system component. Mutually exclusive with --get-hw-

none

-c,--component COMPONENT kernel none
description. rootfs

N.B.The components affected by this process may include FSBL configuration, U-Boot options, Linux kernel options, and the Linux device tree
configuration.

petalinux-package Tool

Packages a PetaLinux project into a format suitable for deployment. The petalinux-package tool is executed using the package type name to specify
a specific workflow in the format petalinux-package --PACKAGETYPE.

The boot package type creates a file (.BIN or .MCS) that allows the target device to boot.
The bsp package type creates a .bsp file which includes the entire contents of the target PetaLinux project.
The firmware package type creates a .tar.gz file which includes the needed files to update a PROM device on a board which has already
been configured. This package format is only compatible with the upgrade-firmware PetaLinux demonstration application.
The pre-built package type creates a new directory within the target PetaLinux project called "pre-built" and contains pre-built content that is
useful for booting directly on a physical board. This package type is commonly used as a precursor for creating a bsp package type.

By default, the petalinux-package tool loads default files from the <plnx-proj-root>/images/linux/ directory.

The table below details the command line options that are common to all of the petalinux-package workflows.

Option Function Description Value Range default Value

-p,--project PROJECT OPTIONAL. PetaLinux project directory path. user-specified current directory

Details for the petalinux-package --boot

The petalinux-package --boot workflow generates a bootable image that can be used directly with a Zynq family device (eg. bootable format is
BOOT.BIN which can be booted from an SD card). The table below details the options that are valid when creating a bootable im age with the
petalinux-package --boot workflow.

Option Function Description
Value

default Value Range

--get-hw-description PATH
Initialize or update the hardware configuration for the user-

PetaLinux project. Mutually exclusive with -c. specified

--format FORMAT REQUIRED. Image file format to generate.
BIN

BIN MCS

--fsbl FSBL REQUIRED. Path on disk to FSBL elf binary.
user- zynqmp_fsbl.elf for Zynq UltraScale+

specified MPSoC.

--force OPTIONAL. Overwrite existing files on disk. none none

--fpga BITSTREAM OPTIONAL. Path on disk to bitstream file.
user-

none specified

--atf ATF-IMG
OPTIONAL. Path on disk to ARM trusted firmware user-

<plnx-projroot>/images/linux/bl31.elf elf binary. specified

OPTIONAL. Path on disk to U-Boot binary. It is U- user-

u-boot.elf for Zynq family device; The

--uboot UBOOT-IMG default image is in <plnx-proj-
Boot ELF for Zynq family device specified root>/images/linux

--kernel KERNEL-IMG OPTIONAL. Path on disk to Linux Kernel image.
user-

<plnx-projroot>/images/linux/image.ub specified

--pmufw PMUFW-ELF
OPTIONAL. Only for Zynq UltraScale+ MPSoC. user- <plnx-proj-root>/pre-

Path on disk to PMU firmware image. specified built/linux/images/pmufw.elf

--add DATAFILE OPTIONAL. Path on disk to arbitrary data to include.
user-

none specified

Details for the petalinux-package --bsp

Compiles all contents of the specified PetaLinux project directory into a BSP file with the provided file name. This .bsp fil e can be distributed and later
used as a source for creating a new PetaLinux project. This workflow is generally used as the last step in producing a project image that can be
distributed to other users. All Xilinx reference BSP’s for PetaLinux are packaged using this workflow.

 The table below details the options that are valid when packaging a PetaLinux BSP file with the petalinuxpackage --bsp workflow.

Option

Function Description
 Value default

 Range Value

-o, --output BSPNAME

 REQUIRED. Path on disk to store the BSP file. File name will be of the form user- current
 BSPNAME.bsp. specified directory

-p,--project PROJECT

OPTIONAL. PetaLinux project directory path. In the BSP context, multiple project areas user- current
 can be referenced and included in the output BSP file. specified directory

 --force OPTIONAL. Overwrite existing files on disk. none none

 --force OPTIONAL. Overwrite existing files on disk. none none

 --clean OPTIONAL. Clean the hardware implementation results to reduce package size. none none

 --hwsource HWPROJECT OPTIONAL. Path to a Vivado project to include in the BSP file. none none

--no-extern

OPTIONAL. Exclude components external to the project referenced using the --searchpath
none none option. This may prevent the BSP from building for other users.

--no-local

OPTIONAL. Exclude components referenced in the local PetaLinux project. This may
none none prevent the BSP from building for other users.

 Details for the petalinux-package --image Package image for component. You can use it to generate uImage for kernel.

 The table below details the options that are alid when packaging a iamge with the petalinux-package --image workflow.

Option

Function Description
Value

default Value

 Range

-p,--project PROJECT OPTIONAL. PetaLinux project directory path.

user-
current directory

 specified

-c,--component COMPONENT OPTIONAL. PetaLinux project component.

user-
kernel, rootfs

 specified

--format FORMAT

OPTIONAL. Image format. It relies on the user- kernel: image.ub, Image for Zynq UltraScale+
 component. specified MPSoC

Details for the petalinux-package --firmware Creates a firmware update package based on the specified PetaLinux project. The firmware package
allows the user to selectively update components of a deployed system. This package may contain components such as U -Boot, the Linux kernel, a
Linux device tree, or a Linux root filesystem.
The table below details the options that are valid when packaging a PetaLinux firmware image with the petalinux-package --firmware workflow.

Option Function Description

 Value
default Value Range

-o, --output PACKAGENAME

OPTIONAL. Full path and name on disk to store the firmware image. user-
firmware.tar.gz Default location is current directory. specified

-p,--project PROJECT OPTIONAL. PetaLinux project directory path.

 user-
current directory specified

--format FORMAT OPTIONAL. Image format. It relies on the component.

 user- kernel: image.ub, Image for
 specified Zynq UltraScale+ MPSoC

--linux UBIMAGE

OPTIONAL. Update the Linux kernel partition with the specified
none image.ub UBIMAGE.

--dtb DTBFILE

OPTIONAL. Update the device tree DTB partition with the specified
none system.dtb DTBFILE.

--fpga BITSTREAM

OPTIONAL. Update the FPGA bitstream partition with the specified
none none BITSTREAM.

--u-boot UBOOT-S

OPTIONAL. Update the U-Boot binary partition with the specified
none u-boot-s.bin UBOOT-S binary.

-a,--add dev:file

OPTIONAL. Update the flash partition named dev with the file user-
none specified by file. This option can be repeated multiple times. specified

--flash FLASHTYPE

OPTIONAL. Specify the type of flash device with which the image is spi
parallel compatible. parallel

 OPTIONAL. Specify the bit width of the data bus for the target 8
 ---data-width SIZE 16 none parellel flash device.
 32

--pre SCRIPT

OPTIONAL. Specify a SCRIPT that should be run on the target user-
none platform prior to updating the flash partitions. specified

Details for the petalinux-package --prebuilt Creates a new directory named "pre-built" inside the directory hierarchy of the specified PetaLinux
project. This directory contains the required files to facilitate booting a board immediat ely without completely rebuilding the project. This workflow
is intended for users who will later create a PetaLinux BSP file for distribution using the petalinux-package --bsp workflow.
The table below details the options that are valid when including pre-built data in the project with the petalinuxpackage --prebuilt workflow.

Option Function Description

Value default
 Range Value

-p,--project PROJECT OPTIONAL. PetaLinux project directory path.

user- current
 specified directory

 --force OPTIONAL. Overwrite existing files on disk. none none

 --clean OPTIONAL. Remove all files from the <plnx-proj-root>/prebuilt directory. none none

--fpga BITSTREAM OPTIONAL. Include the BITSTREAM file in the prebuilt directory.

user-
none specified

-a,--add src:dest

OPTIONAL. Add the file/directory specifed by src to the directory specifed by by user-
none dest in the pre-built directory. specified

Other tool

PetaLinux contains other command, whitch are not described in this guide because are out of the scope of the AXIOM BSP usage.
The commands are:

petalinux-create
petalinux-util

petalinux-util --gdb
petalinux-util --xsdb-connect
petalinux-util --jtag-logbuf
petalinux-util --update-sdcard
petalinux-util --webtalk

XGenImage

Contents

1 Software Requirements Specification
2 Download
3 Workflow
4 Folder tree structure
5 Usage overview
6 Logging
7 Configuration initialization
8 Import/export configuration
9 Clean
10 Configuration

10.1 Main menu
10.2 Image Output
10.3 Image setup
10.4 BSP source
10.5 BSP location
10.6 File System sources
10.7 File System setup

11 Image creation
12 Patches

1 Software Requirements Specification

Tool name:
xgenimage

Interface:
Command line with options

Description:
Generic tool to automate the image creation process

Programming Language:
Bash Shell Scripting as main language, plus external tools like: debootstrap

Compatibility:
The tool must be compatible with Ubuntu 16.04, others distributions are a plus

INPUT:

Import all image characteristics from a configuration file,
see this as reference: https://git-private.axiom-project.eu/genautoinstall/blob/master/ks.cfg

The most important parameters are:
Linux Kernel Image (binary)
Bootloader Image (binary)
Partition size definition (boot + rootfs)
package list (example: openssh-server, libopenmpi, etc.)
custom deb packages (for example OmpSs and all evidence axiom packages)
Variantis: desktop, minimal
all operating sistem configuration: default user, timezone, keyboard settings etc.

OUTPUT:
sd-card image ready to flash (dd if=axiom.img of=/dev/mmcblock bs=1M)
rootfs partition (partition is better, .tar is dangerous)

EXTRA:
Is a good idea provide a very small sd-card image and at first startup make an automatic partition resize to fill all remaining space in sd-card.

2 Download

The tool is available under git repository (https://git-private.axiom-project.eu/xgenimage/)
To obtain it:

$ git clone https://git-private.axiom-project.eu/xgenimage/

3 Workflow
The main task are:

Task Function Description

 Initialization (REQUIRED) Set the tool with the default configuration

 Configuration (OPTIONAL) User configuration manipulation

Image creation (FINAL TASK) creation of bootable SD image

 center Tool Workflow

4 Folder tree structure

5 Usage overview

This is a command line tool. Each main task has the own argument set:

1. ./xgenimage --usage

* Usage: xgenimage [OPTIONS...]
*
* Examples:
* xgenimage -f # set current configuration from default one
* xgenimage -c # open the menu configuration file for editing
* xgenimage -e=my_config # save the current configuration in my_config file
*

* General options:
*

* -h | --help : help message
* -u | --usage : usage message
* -d | --debug : enable debug messages
* -v | --verbose : enable verbose messages
* -V | --version : print software version
*

* Configuration control:
*
* -c | --config : open the config file editor
* -D | --defconfig : restore the configuration with default one
* -e | --exportconfig : export the current configuration in OUTCONFIG file
* The default output file is defconfig. If you want
* to change the output file:
* -e=<output file>
* --exportconfig=<output file
* -C | --cleanall : clean all user settings
*
* Image creation:
*
* -I | --full-image : create a complete image file with the given specification
*

6 Logging

For each image creation procedure a log file is created into the log folder: work/logs/ The log file contain all the information, warning and error divided step by step.
At the start of the procedure the name of relative log file is mentioned:

./xgenimage.sh -I
* Create BSP configuration file... OK
* Created new log file: ./work//logs/xgenimage_log_20171024_1259.log

7 Configuration initialization

The default configuration file are stored into the folder: xgenimage/store/local/configs All file are name with “_defconfig” as suffix. With the command --defconfig,
the tool automatically search a file into this folder with name passed as argument (without _defconfig suffix). The main output of this command is the file .config
store into the root folder of the tool. This file is used as current configuration file. All user configuration selection are booked into this file.

To use the current official configuration:

./xgenimage.sh --defconfig=axiom_ubuntu

With the execution of this command, some file are created:

Store/Xconfig_BSP : Kconfig file for the list of available BSP revisions, as mentioned before.
Store/env.sh : script used to export end unset the current configuration environment, used during the image creation procedure.

8 Import/export configuration

It is possible to export the current setting in a new default configuration file:

./xgenimage.sh --exportconfig=my_config

The file my_config will be stored into the root folder of the tool.

9 Clean

Interested files:

Configuration file
All file created at run-time

Command:

./xgenimage.sh --cleanall

10 Configuration

The configuration is managed via menuconfig interface. To access to it:

./xgenimage.sh --config

Main menu

Item Function Description

Image Output All the options that involve the output image file

Image Setup Source of the BSP package (remote o local)

BSP package path Local source path of the BSP location

File System sources Source of the base Ubuntu File System

File System Setup Ubuntu setting to apply after the installation into the root partition

File System checking Set of item about the File System integrity checking operation

center Main menu

Image Output

Item Function Description

Image file name name of the output file (default: axiom_image)

center Image Output

Image setup

Item Function Description

Size of the boot partition size, in MB, of the boot partition (default: 64MB)

Label of the boot partition label of boot partition (default: bootfs)

Size of the root partition size, in MB, of the root partition (default: 4096MB)

Label of the root partition label of root partition (default: rootfs)

Use data #1 partition
Create a generic data partition after the rootfs partition (default: diable)

If select, allows setting of name and size of this partition

Use data #2 partition
Create a generic second data partition after the data1 partition (default:

diable)
 If select, allows setting of name and size of this partition

center Image setup

BSP source

Item Function Description

BSP package form local folder local source for the BSP package (default: enable)

BSP package form remote server Remote source for the BSP package (default: disable)
center BSP source

BSP location

Item
Function

Description

 local source for the

BSP package path
BSP package

(default:

 ./axiom_bsp.bsp

 release to use of

release
the BSP present
into the server

 (default: release

center local BSP source

center remote BSP source

 1.0

File System sources

 Item Function

Description

 use local archivie
 Base File System from local archive as base for the File
 System building

 (default: disable)

Base File System from remote

use remote archivie
 as base for the File
 archive System building
 (default: enable)

 use full debootstrap
 Base File System from debootstrap (firsr and second

stage) for the File

center File System sources

center File System local sources

procedure

 System building

 (default: disable)

File System setup

Item Function Description

Board's hostname system hostname (default: axiom)

Account user name name of the dafault user (default: ubuntu)

Account user password passowrd of the default user (default: ubuntu)

 center File System setup

Root password access password of the system administrator (default: root)

Image creation

This procedure is divided in tasks:

Downlaod of the BSP at specified revision;
Creation of an empty image file of size and name specified by configuration environment;
Partitioning and formatting;
Bootfs and Rootfs partition mounting;
Install BSP into Bootfs partition;
Perform first and second stage into Rootfs partition;
Set the user access (specified by configuration environment);
Apply patches “pre-installation”
Install packages listened into a file
Apply patches “post-installation”
Unmount both Bootfs and Rootfs partitions

- the image file is now available for SD device flashing -

At the end of each tasks there is a check test to verify the good completion of the task. For each execution of this procedure a log file is c reated

Command:

./xgenimage.sh --full-image

Patches

All patches are grouped in two folder:

patch_pre_install : all patched which must be applied after the debootstrap steps and before the installation of the list of packages;
patch_post_install : all patched which must be applied after the installation of the list of packages.

The patches are intended to be applied in no chroot mode and in order to make this application more generic as possible a standard format of them is used:

1. Each patch must be included in a folder with name composed by four digits as prefix and label separated by character ‘_’;
2. In each folder must be present a file to patch (or install);
3. In each folder must be present a text file named “patch”, with the follow structure:

##DESCRIPTION##
<brief descriptin>
##DESCRIPTION##

##FILE##
<file, object of the patch>
##FILE##

##CMD##
<command>
##CMD##

With:

<brief descriptin>: Description printed into the log during the execution;
<file, object of the patch>: File name to patch or to install;
<command>: Command to perform. Use @FILE to refer to the file reported above and @ROOTFS to refer to the rootfs folder (mount point of the partition
image)

The four digits are used to create a sequence into the application of the patch.
Actual patches:

patch_post_install:

├── 0000_apt-source_list
│ ├── patch
│ └── sources.list
└── 0001_apt-no-recommands

├── apt.conf
├── patch
└── sources.list

patch_post_install:

├── 0000_gpu_link
│ ├── gpu_link.tar.gz
│ └── patch
│── 0001_xorg_driver
│ ├── armsoc_drv.so
│ └── patch
├── 0002_xorg_conf
│ ├── patch
│ └── xorg.conf
├── 0003_slim_conf
│ ├── patch
│ └── slim.conf
└── 0004_wallpaper

├── AXIOM_InfoGraphic_Comp.jpg
└── patch

PMT - Power Monitoring Tool

Contents

1 Introduction
2 Installation
3 Placement
4 Working and Output
5 Change Parameters

1 Introduction

Simple set of bash scripts used to acquire data about power consumption.
The tool is provided as deb package (actual version: 2.0).
Download: archive (https://wiki.axiom-project.eu/images/4/4d/Pwrm-plot_2.0.zip)
This contains both deb package and archive of all file.

2 Installation

If the package 1.0 is already installed into the working system, place remove it:

dpkg --remove pwrm-plot1.0

To install the newest version:

dpkg -i pwrm-plot_2.0.deb

3 Placement

The script to launch is placed, by default, into the Desktop folder:

/home/ubuntu/Desktop/hwmon_scan_all.sh

4 Working and Output

The script create eight file (one for power monitor) to store the acquired data. These data are composed by:

sampling time
Current consumption (in mA)
Power consumption (in mW)

and are presented in tabular form in order to allow the importing into spreadsheet software (e.g. Microsoft Excel), as CSV fi le Each file has a standar
name:

rail_<id>_<name>.dat

where:

id: is the id of the power monitor (from 0 to 7);
name: is the name of the power monitor

Example of file output:

root@axiom:/home/ubuntu/Desktop# cat rail_0_PM_VCC_INTFP.dat
Time(ms) Current(mA) Power(mW)
135 1677 1380
438 1665 1380
711 1619 1320
999 1696 1380
1288 1673 1380
1570 1670 1380
1881 1675 1340
2156 1691 1340
2452 1636 1340

2723 1594 1280
2998 1672 1380
3292 1686 1380
3559 1654 1340
3829 1608 1320
4116 1684 1380
4400 1649 1340
4700 1701 1400
4993 1642 1340
5258 1661 1380
5554 1654 1340
5816 1661 1380
6067 1573 1320
6325 1557 1280
6568 1436 1240
6812 1415 1280
7059 1638 1340
7304 1431 1220
7551 1449 1220
7798 1517 1380
8064 1645 1340
8341 1689 1380
8634 1638 1340
8902 1665 1380
9196 1666 1380
9515 1679 1380
9795 1680 1380

5 Change Parameters

Available parameters:

Sampling time (in msec)
Sampling duration (in sec)
folder to store the output file

To change these parameters the user have to edit the script file and set the follow variables:

STIME for the sampling duration;
LTIME for the sampling time;
FOLDER for the placement of the output file

UBOOT/EnvironmentConfiguration
 SPI eMMC uSD USB TFTP NFS

image.ub ToDo ToDo Yes Yes Yes

FileSystem Yes Yes Yes ToDo

KERNEL/PowerMonitor

Contents

1 Introduction
2 Hardware References
3 SYSFS Interface
4 IOCTL Interface

1 Introduction
The board has eight INA219 chips for monitoring current and power. These chips are connected with the Zynq Ultrascale+ via I2C and at each of it
is assigned a kernel driver for the user access to the consumption data. In fact, this driver provides both SYSFS and IOCTL interfaces.

2 Hardware References
Chip Part Number: INA219 (http://www.ti.com/lit/ds/symlink/ina219.pdf)
The following rail are monitored:

Bus Label

Nominal System ID
Description Voltage (V) (*)

 0.85V_INTFP PM_VCC_INTFP 0.85 0 PS full-power domain supply voltage

 0.85V_VCCINT PM_VCC_INT 0.85 1 PL internal power supply

 12V_ALW PM_VIN 12 2 VIN power supply

 0.85V_INTFP_DDR PM_INTFP_DDR 0.85 3 PS DDR controller and PHY supply voltage

 1V2_DDR_PS PM_1V2_DDR_PS 1.2 4 PS DDR supply

 1.2V_DDR_PL PM_1V2_DDR_PL 1.2 5 PL DDR supply

 MGTAVCC PM_MGTAVCC 0.9 6 Analog supply voltage for GTH transceiver

1.2V_MGTAVTT PM_MGTAVTT 1.2 7

Analog supply voltage for GTH transmitter and receiver
 termination circuits

(*) The System ID is a conventional zero based number used to uniquely identify the chip. This number is used also as suffix of t he device file
descriptor assigned at each driver instance.

All the eight chip are connected to the Zynq Ultrascale+ through the bus I2C0 of the processor and the addresses from 0x40 to 0x47 are assigned to
them. The user can see this at File System console with the i2c-tool:

root@secolnx01:~# i2cdetect -y -r 0

0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: UU UU UU UU UU UU UU UU -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --
root@secolnx01:~#

Compensation
For each chip there is an RC input filter circuit. For this reason the relative driver has compensation value to neglected the filter effect. This value
is represented in ‰.
NB:The compensation parameter has an initial value reported into the DTS file of the kernel source code. This value has been eva luated through
external measurements (as reported in 8.5.2.1 Calibration Register and Scaling of the datasheet) and the changing of it could lead to incorrect
evaluation of power and power by the chip.

3 SYSFS Interface

As mentioned before, each chip has an own SYSFS interface. In that folder there are all file description needed to access to consumption data. All these
file are read-only, with the exception of the 'compensation' (for more info about the compensation, please see above).

 Bus/SYSFS combination

Bus SYSFS Folder

PM_VCC_INTFP /sys/devices/platform/amba/ff020000.i2c/i2c-0/0-0040/hwmon/hwmon0

PM_VCC_INT /sys/devices/platform/amba/ff020000.i2c/i2c-0/0-0041/hwmon/hwmon1

PM_VIN /sys/devices/platform/amba/ff020000.i2c/i2c-0/0-0042/hwmon/hwmon2

PM_INTFP_DDR /sys/devices/platform/amba/ff020000.i2c/i2c-0/0-0043/hwmon/hwmon3

PM_1V2_DDR_PS /sys/devices/platform/amba/ff020000.i2c/i2c-0/0-0044/hwmon/hwmon4

PM_1V2_DDR_PL /sys/devices/platform/amba/ff020000.i2c/i2c-0/0-0045/hwmon/hwmon5

PM_MGTAVCC /sys/devices/platform/amba/ff020000.i2c/i2c-0/0-0046/hwmon/hwmon6

PM_MGTAVTT /sys/devices/platform/amba/ff020000.i2c/i2c-0/0-0047/hwmon/hwmon7

In each SYSFS folder there are the following file descriptor:

SYSFS User Interface

File Name Access Description

bus_name r Name of the bus of the board under measurement

shunt_resistor r Value in mOhm of the shunt resistor

in0_input r Shunt voltage measurement data (in mV)

in1_input r Bus voltage measurement data (in mV)

curr1_input r Current (in mA) flowing into the shunt resistor

power1_input r Power (in mW) supplied to the load over the bus

compensation r/w Compensation value (in ‰) to delete the load of the filter

dump_regs r Raw value list of all chip registers

Below is reported an example in which we read the power consumption on the PM_VIN:

ubuntu@secolnx01:~$ su -
Password:
root@secolnx01:~# cd /sys/devices/platform/amba/ff020000.i2c/i2c-0/0-0042/hwmon/hwmon2
root@secolnx01:/sys/devices/platform/amba/ff020000.i2c/i2c-0/0-0042/hwmon/hwmon2# ll
total 0
drwxr-xr-x 2 root root 0 Feb 11 16:28 ./
drwxr-xr-x 3 root root 0 Feb 11 16:28 ../
-r--r--r-- 1 root root 4096 Feb 11 16:54 bus_name
-rw-r--r-- 1 root root 4096 Feb 11 16:54 compensation
-r--r--r-- 1 root root 4096 Feb 11 16:54 curr1_input
lrwxrwxrwx 1 root root 0 Feb 11 16:54 device -> ../../../0-0042/
-r--r--r-- 1 root root 4096 Feb 11 16:54 dump_regs
-r--r--r-- 1 root root 4096 Feb 11 16:54 in0_input
-r--r--r-- 1 root root 4096 Feb 11 16:54 in1_input
-r--r--r-- 1 root root 4096 Feb 11 16:54 name
lrwxrwxrwx 1 root root 0 Feb 11 16:54 of_node -> ../../../../../../../../firmware/devicetree/base/amba/i2c@ff020000/ina219@42/
-r--r--r-- 1 root root 4096 Feb 11 16:54 power1_input
-rw-r--r-- 1 root root 4096 Feb 11 16:54 shunt_resistor
lrwxrwxrwx 1 root root 0 Feb 11 16:28 subsystem -> ../../../../../../../../class/hwmon/
-rw-r--r-- 1 root root 4096 Feb 11 16:28 uevent
root@secolnx01:/sys/devices/platform/amba/ff020000.i2c/i2c-0/0-0042/hwmon/hwmon2# cat bus_name
PM_VIN
root@secolnx01:/sys/devices/platform/amba/ff020000.i2c/i2c-0/0-0042/hwmon/hwmon2# cat power1_input
5240 # in mW

4 IOCTL Interface
For each istance of the driver relative to the INA219 chip, a device file descriptor is createrd into the /dev/ folder. Its n ame is ina219.X where X is the
System ID assigned to the bus (for the combination bus/ID, please see the table in Hardware References).
Follow the kind of accesses allowed from the driver:

 IOCTL Programming Interface

 Flag Access type Description Parameter

 INA2XX_BUS_NAME_GET r Returns the name of the bus of the board under measurement *char

 INA2XX_BUS_VOLTAGE_GET r Returns the bus voltage measurement data (in mV) *int

 INA2XX_SHUNT_VOLTAGE_GET r REturns the shunt voltage measurement data (in mV) *int

 INA2XX_CURRENT_GET r Returns the current (in mA) flowing into the shunt resistor *int

 INA2XX_POWER_GET r Returns the power (in mW) supplied to the load over the bus *int

 INA2XX_CALIBRATION_GET r Returns the calibration value used by the chip to evaluate the curret/power *int

Example of IOCTL access to read the bus name of the driver with ID=2:

#define PM_BUS_NAME_LEN 128

char fname_device[64];
char bus_name[PM_BUS_NAME_LEN];
struct stat buf;
int file = 0;
int ret = 0;

fname = "/dev/ina219.2"

if (stat (fname_device, &buf))) {

// file does not exist
return -20;

}

file = open (fname_device, O_RDWR);
if (file < 0) {

// no file open
access return -errno;

}

ret = ioctl (file, INA2XX_BUS_NAME_GET, bus_name);

close (file);
}

The AXIOM-board
PART TWO - Software guide

Intro
This part contains instruction on how to get, install, and run the AXIOM NIC drivers and user -space applications developed for the AXIOM board.

The main components of the AXIOM infrastructure are the following (see the figure above):

The AXIOM NIC: Implemented in the FPGA by partner FORTH. The AXIOM NIC exports a set of registers to the computing part of th e
FPGA. These registers are described in the Datasheet, that can be found in the #Documentation.
Axiom NIC Device driver: Implements the kernel-related part of the infrastructure, which is responsible for a proper handling of the AXIOM
NIC registers, and which is responsible for providing abstractions for communication ports, an IOCTL interface to the user sp ace, and for
extending the HW buffering space in memory thanks to the usage of kernel threads.
Axiom User Library: The AXIOM User Library is responsible for providing a comprehensive C API, which can be used by the AXIOM
applications to interact with the network interface in a simpler way.

The main features of the AXIOM NIC are the following:

Interrupt moderation: The AXIOM NIC only generates interrupts when the queue status has changed. Link status monitoring: The AXIOM
NIC is able to provide information about the fact that a specific interface of the board is connected or not to another board.
Routing decision based on a Routing Table: The routing of messages in the AXIOM NIC is based on a store & forward technique, where each
node maintains a routing table in the FPGA, holding the information about the interface to use to reach another node.
Multiple type of messages: The network interface is able to concurrently send two kind of messages, small and big messages.
Multiple queues available: The AXIOM NIC provides 2 set of queues for reasons of efficiency to separate message (one for small and one for
big messages)

During the design of the network infrastructure, we took special care about defining a complete system that could be efficien tly mapped on the
parallel programming libraries running in user space. For this reason, we followed these guidelines during the implementation of the AXIOM
Drivers and during the design of the AXIOM NIC registers:

Network management in user space: Compared to the standard TCP/IP Linux stack, we tried to move various features and network support in
user space, limiting the AXIOM NIC driver to its main task of handling the delivery of the packets between the user space app lications and the
AXIOM NIC registers. Possibility to support for memory mapped registers exposed to the user space: We left open the possibility to use
memory mapped registers to avoid the use of IOCTL on each packet transfer, and to reduce memory copies. On the other hand, th is requires
the availability of separate per-process network queues to limit the overhead that is linked to mutual exclusion on the NIC register sets.
Possibility to use the NIC as tunnel for ethernet packets: The idea is that the long messages will be used as datagram s, giving the possibility
for TCP/IP packet to be sent on top of the AXIOM NIC layers. This has the advantage to reduce cabling between the boards (onl y the AXIOM
Link is needed), allowing legacy applications based on TCP/IP to run unmodified on top of the AXIOM-link network.

How to get the software
To use AXIOM SW Stack on the AXIOM board:

you can #Download_the_SD_for_the_AXIOM_board
you can #Clone_the_repository_and_compiles_deb_packages

To use AXIOM SW Stack on the AXIOM QEMU simulator (up to axiom-v0.13):

you can #Download_the_VDI_image_-_QEMU_sim you can #Download_the_tarball_-
_QEMU_sim
you can #Clone_the_repository_and_compiles_deb_packages

Download the SD for the AXIOM board

The following links contain the SD for the AXIOM board with the AXIOM SW Stack already installed: [SD image with axiom-v1.2
(https://upload.axiom-project.eu/uploads/WP7/SDIMAGE
/XOS_v1.1_20180319.tar.bz2)]
[SD image with axiom-v1.1 (https://upload.axiom-project.eu/uploads/WP7/SDIMAGE
/XOS_v1.0_20180315.tar.bz2)]
[SD image with axiom-v1.0 (https://upload.axiom-project.eu/uploads/WP7/SDIMAGE
/XOS_v0.9_20180208.tar.bz2)]
[SD image with axiom-v0.15 (https://upload.axiom-project.eu/uploads/WP7/SDIMAGE
/XOS_v0.3_20171113.tar.bz2)]
[SD image with axiom-v0.14 (https://upload.axiom-project.eu/uploads/WP5/axiom- nic/20170911_axiom_evi_sd.img.7z)]

Download the DEBs, kernel and bitstream for the AXIOM board

The following links contain the DEBs of the AXIOM SW Stack, and the archive with kernel and bitstream for the AXIOM board:
[AXIOM SW Stack v1.0 DEBs (https://upload.axiom-project.eu/uploads/WP5/axiom-nic/axiom-evi-debs- v1.0.7z)]
[Kernel and bitstream for AXIOM SW Stack v1.0 (https://upload.axiom-project.eu/uploads/WP5/axiom- nic/axiom-evi-boot-v1.0.7z)]
[AXIOM SW Stack v0.15 DEBs (https://upload.axiom-project.eu/uploads/WP5/axiom-nic/axiom-evi-debs- v0.15.7z)]
[Kernel and bitstream for AXIOM SW Stack v0.15 (https://upload.axiom-project.eu/uploads/WP5/axiom- nic/axiom-evi-boot-v0.15.7z)]

Clone the repository and compiles deb packages

clone the repository
git clone https://git.axiom-project.eu/axiom-
evi cd axiom-evi

init the submodules (may take awhile)
./scripts/submodules_update.sh

read the README (https://git.axiom-project.eu/axiom-evi/blob/master/README) with the instructions to compile
t

IPoverAXIOM set to subnet 192.168.17.0/24
Other nodes are reachable with IP: 192.168.17.NODEID
Local IP is 192.168.17.1

How to run the AXIOM utilities and tests
During the boot of AXIOM boards, all daemons are automatically started through a systemd service. You only need to:

connect USB-C cables between boards

you can use any of the four USB-C port
cables are bi-directional, so one cable is enough to connect two boards boot all boards

access to shell of one board (using serial port, or ethernet cable or keyboard and monitor) start discovery of other nodes in the
cluster

at the end will be printed the network topology and the routing table of the master node (node where axiom-make-master.sh is launched)
Notes:

Node 0 is not assigned in the cluster
IF 0 is an internal interface used to send loopback messages In the topology table, 255 means cable
disconnected
In the routing table, 0 means node is not reachable with specified IF

************* Master computed Topology *******
Node IF0 IF1 IF2 IF3 IF4
0 255 255 255 255 255
1 255 255 2 255 255
2 255 1 255 255 255
Node 1 ROUTING TABLE
Node IF0 IF1 IF2 IF3 IF4
0 0 0 0 0 0
1 1 0 0 0 0
2 0 0 1 0 0

The following links explain how to run tests and utilities (must be root to run all AXIOM application):

axiom-* application (https://git.axiom-project.eu/axiom-evi-apps/README)
AXIOM tests [[1] (https://git.axiom-project.eu/axiom-evi-apps/blob/master/tests/README)] OmpSS tests [[2] (https://git.axiom-
project.eu/axiom-evi/blob/master/tests/ompss/README)] GASNet tests [[3] (https://git.axiom-project.eu/axiom-
evi/blob/master/tests/gasnet/README)]

To compile the software in the repository follow this link [[4] (https://git.axiom-project.eu/axiom-evi/blob
/master/README)]

sudo axiom-make-master.sh

