
Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 1 of 31

 FRAMEWORK PROGRAMME
ICT-01-2014: Smart Cyber-Physical Systems

PROJECT NUMBER: 645496

Agile, eXtensible, fast I/O Module for the cyber-physical era

D5.4 – Final operating system and documentation

Due date of deliverable: 31st January 2018
Actual Submission: 14th February 2018 (agreed extended date)

Start date of the project: 1st February 2015 Duration: 36 months

Lead contractor for the deliverable: EVI

Revision: See file name in document footer.
Project co-founded by the European Commission

within the HORIZON FRAMEWORK PROGRAMME (2020)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Change Control
Version# Date Author Or-

ganiz.
Change History

0.1 05.01.2018 Paolo Gai, Stefano Garzarella EVI Initial version starting from D5.3
0.2 18.01.2018 Paolo Gai, Stefano Garzarella EVI Added real-time section
0.3 30.01.2018 Paolo Gai, Stefano Garzarella EVI Updated real-time section
0.4 08.02.2018 Paolo Gai, Stefano Garzarella, Xavier

Martorell, Daniel Jiménez-González,
Carlos Álvarez

EVI/B
SC

Update load balancing and AX-
IOM SW Stack sections

0.5 09.02.2018 Roberto Giorgi UNISI DF-Threads
0.6 13.02.2018 Paolo Gai EVI Integration of reviewers’ com-

ments

Release Approval
Name Role Date
Paolo Gai WP Leader 09.02.2018
Roberto Giorgi Project Coordinator for formal deliverable 14.02.2018

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 2 of 31

The following list of authors will be updated to reflect the list of contributors to the document.

Paolo Gai, Stefano Garzarella, Bruno Morelli
R&D Department, Evidence

Xavier Martorell, Daniel Jiménez-González, Carlos Álvarez
CS Departament

Barcelona Supercomputing Center (BSC) - AXIOM
Universitat Politècnica de Catalunya - AXIOM

Marco Procaccini, Farnam Khalili, Roberto Giorgi
University of Siena, Italy

© 2015-2018 AXIOM Consortium, All Rights Reserved.
Document marked as PU (Public) is published in Italy, for the AXIOM Consortium, on the www.AXIOM-project.eu web site
and can be distributed to the Public.
All other trademarks and copyrights are the property of their respective owners. The list of author does not imply any claim of
ownership on the Intellectual Properties described in this document.
The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities for errors
or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of
the information contained in this document.
This document is furnished under the terms of the AXIOM License Agreement (the "License") and may only be used or copied
in accordance with the terms of the License. The information in this document is a work in progress, jointly developed by the
members of AXIOM Consortium ("AXIOM") and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade secrets owned
by or licensed to AXIOM Partners. The partners reserve all rights with respect to such technology and related materials. Any
use of the protected technology and related material beyond the terms of the License without the prior written consent of
AXIOM is prohibited. This document contains material that is confidential to AXIOM and its members and licensors. Until
publication, the user should assume that all materials contained and/or referenced in this document are confidential and pro-
prietary unless otherwise indicated or apparent from the nature of such materials (for example, references to publicly available
forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohibited without
the prior written consent of AXIOM or such other party that may grant permission to use its proprietary material. The trade-
marks, logos, and service marks displayed in this document are the registered and unregistered trademarks of AXIOM, its
members and its licensors. The copyright and trademarks owned by AXIOM, whether registered or unregistered, may not be
used in connection with any product or service that is not owned, approved or distributed by AXIOM, and may not be used in
any manner that is likely to cause customer confusion or that disparages AXIOM. Nothing contained in this document should
be construed as granting by implication, estoppel, or otherwise, any license or right to use any copyright without the express
written consent of AXIOM, its licensors or a third party owner of any such trademark.
Printed in Siena, Italy, Europe.
Part number: Please refer to the File name in the document footer.

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE AXIOM SPECIFICATION IS PROVIDED BY AXIOM TO MEMBERS "AS
IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS.
AXIOM SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES OF
ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ANY DAMAGES ARISING FROM LOSS OF USE
OR LOST BUSINESS, REVENUE, PROFITS, DATA OR GOODWILL) ARISING IN CONNECTION WITH ANY INFRINGEMENT
CLAIMS BY THIRD PARTIES OR THE SPECIFICATION, WHETHER IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY,
NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 3 of 31

TABLE OF CONTENTS
ͳ Executive summary ..͸
ʹ Introduction ...͹

ʹ.ͳ Document structure .. ͹
ʹ.ʹ Relation to other deliverables.. ͹
ʹ.͵ Tasks involved in this deliverable .. ͅ
ʹ.Ͷ Changes compared to Dͷ.͵ .. ͅ

͵ The AXIOM cluster and the AXIOM software stack ..ͻ
Ͷ Components of the software stack .. ͳͲ

Ͷ.ͳ AXIOM Drivers, User libraries and applications ... ͳͲ
Ͷ.ʹ GASNet conduit ... ͳʹ
Ͷ.͵ OmpSs framework ... ͳʹ

ͷ Using the AXIOM software stack .. ͳʹ
͸ Mechanisms for load balancing .. ͳͶ

͸.ͳ Improving load balancing with OmpSs@FPGA .. ͳͶ
͸.ʹ Load balancing by dataflow-thread based execution .. ͳͷ

͹ Analysis of the real-time guarantees .. ͳͺ
ͺ Archives released ... ʹ ʹ
ͻ Confirmation of DoA objectives and Conclusions ... ʹ ʹ
ͳͲ References .. ʹ ͵
ͳͳ Appendix ͳ ... ʹ ͷ

ͳ.ͳ Communication between XSMLL Hardware and Software ... ʹ ͷ
ͳ.ʹ Packet format between XSMLL and NIC and timing ... ͵ ͳ

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 4 of 31

TABLE OF FIGURES
 F)GURE ͳ - T(E AX)OM SOFTWARE STACK. ... ͳͲ F)GURE ʹ - EXECUT)ON TRACE OF MATR)X MULT)PL)CAT)ON US)NG ͵ SMP CORES AND ͳ FPGA)P CORE. ͳͶ F)GURE ͵ - EXECUT)ON OF MATR)X MULT)PL)CAT)ON W)T(T(E (YBR)D WORKER AND S(OW)NG T(E)NSTRUMENTAT)ON)NTERNALS. .. ͳͷ F)GURE Ͷ – XSMLL (ARDWARE/SOFTWARE ARC()TECTURE. T(ERE ARE N NODES AND M CORES PER NODE. XTQ ARE T(E XSMLL T(READ QUEUES AND XNM)S T(E XSMLL NODE MANAGER T(AT)MPLEMENTS SEVERAL F)N)TE STATE MAC()NES. ... ͳͷ F)GURE ͷ – XSMLL MESSAGE PROTOCOL. .. ͳ͸ F)GURE ͸ – XSMLL MESSAGE PROTOCOL. C=CORE, XTQ= XSMLL T(READ QUEUE, XWT=XSMLL WA)T)NG TABLE, XFFT=XSMLL FREE-FRAME TABLE, XPTQ=XSMLL PEND)NG T(READ-REQUEST QUEUE. ͳ͹ F)GURE ͹ – COMPAR)SON AMONG XSMLL EXECUT)ON T)ME ȋSECONDSȌ AND OPENMP), JUMP PROGRAMM)NG MODEL EXECUT)ON. T(E BENC(MARK)S MATR)X MULT)PL)CAT)ON W)T(SQUARE MATR)X S)ZE OF ʹͳ͸, Ͷ͵ʹ, ͺ͸Ͷ AND BLOCK S)ZE OF ͺ. T(E NODES ARE CONF)GURED W)T(ONLY ͳ CORE EAC(. ... ͳ͹ F)GURE ͺ – COMPAR)SON AMONG XSMLL Lʹ-CAC(E M)SS RATE AND OPENMP), JUMP PROGRAMM)NG MODEL Lʹ M)SS-RATE. T(E BENC(MARK)S MATR)X MULT)PL)CAT)ON W)T(SQUARE MATR)X S)ZE OF ʹͳ͸, Ͷ͵ʹ, ͺ͸Ͷ AND BLOCK S)ZE OF ͺ. T(E NODES ARE CONF)GURED W)T(ONLY ͳ CORE EAC(. ... ͳ͹ F)GURE ͻ -)RQS ARE TYP)CALLY SC(EDULED ON CORE Ͳ,)NTERRUPT)NG AND SLOW)NG DOWN COMPUTAT)ONAL T(READS. .. ͳͻ F)GURE ͳͲ - UNDER SC(ED_DEADL)NE, A TASK CONSUM)NG TOO MUC(CPU)S T(ROTTLED. .. ͳͻ F)GURE ͳͳ - EXECUT)ON T)ME OF A MATR)X MULT)PLY VARY)NG T(E SC(ED_DEADL)NE BANDW)DT(PARAMETER W)T(A F)XED PER)OD ȋͳͲͲ MSȌ FOR T(E COMMUN)CAT)ON T(READ. .. ʹͳ F)GURE ͳʹ - EXECUT)ON T)ME OF A MATR)X MULT)PLY VARY)NG T(E SC(ED_DEADL)NE PER)OD PARAMETER W)T(A F)XED CPU BANDW)DT(ȋͷ%Ȍ FOR T(E COMMUN)CAT)ON T(READ. .. ʹʹ

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 5 of 31

GLOSSARY
API – Application Programming Interface

ARM – Instruction set architecture developed by ARM Holdings Ltd.
BLAS – Basic linear algebra subprograms
FPGA – Field Programmable Gate Array
IP – Intellectual property
LTS – Long Term Support
Mali – A GPU microarchitecture developed by ARM Holdings Ltd.
Mercurium – OmpSs compiler
Nanos++ – OmpSs runtime
NDA – Non-disclosure agreement
NEON – SIMD extensions for the ARM instruction set
NIC – Network interface
PL – Programmable logic
QEMU – Quick EMUlator
RTL – Register transfer language
RTSP – Real-time streaming protocol
SD – Secure Digital
SDK – Software Development Kit
SDSM – Software Distributed Shared Memory
SGEMM – Single-precision floating-point general matrix multiply
SIMD – Single instruction, multiple data
SMP – Symmetric multiprocessing
SMT – Simultaneous multithreading
SoC – System on chip

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 6 of 31

1 Executive summary
This document is an update of deliverable D5.3, and includes all the software developed in WP5, plus
the results of task T5.4 (mechanism for load balancing and analysis of real-time guarantees).

The software is released both as source code and as precompiled Debian packages. It includes a com-
plete software stack starting from the AXIOM Linux drivers and arriving to the OmpSs@Cluster pro-
gramming library.

All this software has been released on the project public website:

 https://download.axiom-project.eu/?dir=RUNTIME

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 7 of 31

2 Introduction
The content of this document is a set of “pointers” to a large quantity of public material, repositories,
documentation and videos developed within the context of the AXIOM project. It also offers a brief
guide that enables external users to re-use (for research, study or further development) the AXIOM
stack at its final development stage. The results of D5.4 represents also the completion of the efforts
initiated in the Task T5.4.

In the initial phase of the development of the software stack, as we described in the D5.3, we preferred
to test the functionality of it on a QEMU based platform (in line with the Xilinx recommendations and
related tools). Afterwards, when the AXIOM NIC implementation on the FPGA was available, we
moved all the development on the AXIOM board (the QEMU support was no more updated).

This document reflects the adaptation of the stack to the real board, and is therefore a final guide to use
the AXIOM Software Stack on the AXIOM board.

2.1 Document structure
Section 3 provides a short description of the AXIOM architecture, useful to understand the various
subsystems. Section 4 includes a description of the various subsystems, providing their location and
documentation pointers. Section 5 provides a short guide on how to use the AXIOM software stack.
Finally, Section 6 and 7 describes the mechanisms for load balancing and the analysis of the real time
guarantees. Section 8 includes a list of all the files object of this release.

2.2 Relation to other deliverables
This document is linked to the following internal deliverables of the AXIOM project:

D5.1 Operating System and Documentation

This document describes in detail the implementation of the AXIOM Linux distribution for the
AXIOM board, and the AXIOM NIC interface.

D5.2 Remote Memory Access

This document describes the cluster setup, memory organization, memory allocator, and task
synchronization. It also includes details on the implementation of the Parallel Programming
library.

D5.3 Parallel Programming Library and Documentation

This document is a short guide of the software release that is part of Task T5.3. The software
release includes a complete software stack starting from the AXIOM Linux drivers up to the
OmpSs@Cluster programming library.

D4.2 AXIOM Code Generation and Instrumentation

This document describes the OmpSs compilation and FPGA support as well as the instrumen-
tation mechanism present in OmpSs.

D4.3 Evaluation of the Compiler and Tools Infrastructure.

After the first prototype AXIOM board will be delivered, the testing will be necessary to verify
the initial software toolchain. Final research results will be included in this deliverable.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 8 of 31

2.3 Tasks involved in this deliverable
Task 5.4 (month 25 - 36): Load balancing and real-time guarantees

What:

This task will deal with the design and development of a Nanos++ scheduling policy taking into con-
sideration task data affinity and load balancing across the nodes.

How:

The work will be done by partner BSC with help from partner EVI for integration. The possibility of
providing real-time guarantees about latencies in both communication and processing will be investi-
gated by partner EVI. UNISI will investigate different load-balancing techniques.

Expected output:

- Version of Nanos++ for the reference platform containing load balancing mechanisms.

- Analysis of real-time latencies.

D5.4: Final operating system and documentation [M36]

This deliverable will consist in an update of deliverable D5.3 containing also the mechanism for load
balancing. An additional document will provide the analysis of the real-time guarantees that the system
can meet.

2.4 Changes compared to D5.3
This deliverable contains some modifications and new contents compared to D5.3:

 The final release of AXIOM software stack runs on the AXIOM board and supports the AX-
IOM NIC developed on the Xilinx Zynq FPGA as part of the AXIOM project. We also replaced
the buildroot filesystem and toolchain with the Ubuntu 16.04 filesystem and the Linaro tool-
chain.

 This document also contains the results of Task T5.4 about the possibility of providing real-
time guarantees and the mechanism for load balancing.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 9 of 31

3 The AXIOM cluster and the AXIOM software stack
The AXIOM system is composed by a set of computing boards connected together to form a cluster
configuration called “AXIOM-cluster”. The connection between boards is implemented through the
AXIOM-link, which is a custom network interface (NIC) developed in the Xilinx Zynq FPGA as part
of the AXIOM project.

Figure 1 presents the high-level view of the AXIOM software stack. In particular, we note in the back-
ground that all nodes are interconnected (as planned) through the AXIOM-link. Moreover, each board
has an FPGA part, including the AXIOM NIC and the XSMLL Layer. The software stack is then run-
ning on each board, and is composed by the following set of main components:

● A Linux distribution (not shown in Figure 1). A complete distribution based on the PetaLinux
SDK with an Ubuntu 16.04 LTS root filesystem (see D5.1);

● A set of device drivers (used to provide support for the AXIOM NIC and for the AXIOM
Memory Allocator);

● A set of user libraries to handle the interfacing between the applications and the kernel driv-
ers;

● A set of utilities, including the daemons axiom-init, axiom-ethtap and the axiom-
run spawner;

● The OmpSs programming libraries, including Nanos++, GASNet, and the AXIOM GASNet
conduit;

● The compilation toolchain, including the Linaro GCC cross-compiler, and the Mercurium
source-to-source compiler.

The following Section contains a list of the software packages, including a short description. In order
to simplify the usage of the software stack, we provided a set of Debian packages to install the AXIOM
software stack in a very simple way.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 10 of 31

Figure 1 - The AXIOM software stack.

4 Components of the software stack
The following is a list of the main components of the AXIOM software stack. It is meant as a reference
that will help to navigate the various packages and directories.

4.1 AXIOM Drivers, User libraries and applications

4.1.1 AXIOM NIC driver and libraries source code
● Short Description: Implementation of AXIOM NIC device driver, User Space libraries and

documentation.
● GIT Repository: https://git.axiom-project.eu/axiom-evi-nic
● Directory in the source zip file: axiom-evi-src-v1.0.tgz/axiom-evi-nic
● Doxygen Documentation: in axiom-v1.0-doxygen PDF or HTML

files/axiom-evi-nic

4.1.2 AXIOM allocator source code
● Short Description: Implementation of the three-level AXIOM allocator.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 11 of 31

● GIT Repository: https://git.axiom-project.eu/axiom-allocator
● Directory in the source zip file: axiom-evi-src-v1.0.tgz/axiom-allocator
● Doxygen Documentation: in axiom-v1.0-doxygen PDF or HTML

files/axiom-allocator

4.1.3 AXIOM memory driver source code
● Short Description: Implementation of the memory device driver to handle virtual to physical

memory mapping.
● GIT Repository: https://git.axiom-project.eu/axiom-evi-allocator-

drv
● Directory in the source zip file: axiom-evi-src-v1.0.tgz/axiom-evi-alloca-

tor-drv
● Doxygen Documentation: in axiom-v1.0-doxygen PDF or HTML

files/axiom-evi-allocator-drv

4.1.4 AXIOM memory library source code
● Short Description: Implementation of three-level software allocator based on LMM.
● Repository: https://git.axiom-project.eu/axiom-evi-allocator-lib
● Directory in the source zip file: axiom-evi-src-v1.0.tgz/axiom-evi-alloca-

tor-lib
● Doxygen Documentation: in axiom-v1.0-doxygen PDF or HTML

files/axiom-evi-allocator-drv

4.1.5 AXIOM application source code
● Short Description: Implementation of AXIOM support application and daemons (axiom-

init, axiom-ethtap, axiom-run, etc.).
● GIT Repository: https://git.axiom-project.eu/axiom-evi-apps
● Directory in the source zip file: axiom-evi-src-v1.0.tgz/axiom-evi-apps
● Doxygen Documentation: in axiom-v1.0-doxygen PDF or HTML

files/axiom-evi-apps

4.1.6 AXIOM scripts
● Short Description: Makefile and scripts to compile all components of the AXIOM software

stack and to generate Debian packages.
● WEB Repository: https://git.axiom-project.eu/axiom-evi/tree/mas-

ter/scripts/
● Directory in the source zip file: axiom-evi-src-v1.0.tgz/scripts

4.1.7 AXIOM tests
● Short Description: Regression and benchmark tests for AXIOM NIC, GASNet and OmpSS.

● WEB Repository: https://git.axiom-project.eu/axiom-
evi/tree/master/tests/

● Directory in the source zip file: axiom-evi-src-v1.0.tgz/tests

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 12 of 31

4.2 GASNet conduit
● Short Description: Modified version of GASNet library that includes the new AXIOM con-

duit.
● GIT Repository: https://git.axiom-project.eu/axiom-evi-gasnet
● Directory in the source zip file: axiom-evi-src-v1.0.tgz/axiom-evi-gasnet

4.3 OmpSs framework

4.3.1 Extrae
● Short Description: Modified version of Extrae to support the trace of IOCTLs and AXIOM

API.
● GIT Repository: https://git.axiom-project.eu/axiom-evi-extrae
● Directory in the source zip file: axiom-evi-src-v1.0.tgz/axiom-evi-extrae
● WEB Documentation: https://tools.bsc.es/extrae

4.3.2 Mercurium
● Short Description: Modified version of mcxx to support AXIOM GASNet conduit and cross-

compilation.
● GIT Repository: https://git.axiom-project.eu/axiom-evi-mcxx
● Directory in the source zip file: axiom-evi-src-v1.0.tgz/axiom-evi-mcxx
● WEB Documentation: https://pm.bsc.es/mcxx

4.3.3 Nanos++
● Short Description: Modified version of nanox to support AXIOM GASNet conduit and

cross-compilation.
● GIT Repository: https://git.axiom-project.eu/axiom-evi-nanox
● Directory in the source zip file: axiom-evi-src-v1.0.tgz/axiom-evi-nanox
● WEB Documentation: https://pm.bsc.es/nanox
● WEB OmpSs User’s Guide: https://pm.bsc.es/ompss-docs/user-guide

5 Using the AXIOM software stack
The compilation procedure of the AXIOM software stack is documented in the README file stored
inside the axiom-evi-src-v1.0.tgz package. The compilation can be performed on a Linux host
machine with a recent distribution (in our case we used Ubuntu 16.04 LTS). The final artifacts of this
procedure are Debian packages (.deb file extension) that are simple to install in the AXIOM OS based
on Ubuntu 16.04 LTS.

When SD cards are ready, it is then possible to interconnect several AXIOM boards by plugging in
USB-C cables to any of the four USB-C ports. Since those cables are bi-directional, it is only required
to use a single cable to connect two boards. Thanks to the discovery algorithm implemented in the
boards, they automatically see each other (plug and play). Therefore, the topology of the cluster will be
discovered at run-time from the master node.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 13 of 31

During the boot process, AXIOM modules and daemons are automatically loaded. To setup the cluster,
it is only needed to connect to one board (which will become the master node) using the serial cable or
the Ethernet port, and later plugging in a keyboard and the mouse.
In order to login into the AXIOM board, the following credentials must be used:

 Username: ubuntu
 Password: ubuntu

After login, cluster discovery can be started simply by opening a console, and later typing in the fol-
lowing commands:
 # For security reasons, all AXIOM applications must be executed

using root privileges

sudo su
axiom-make-master.sh

At the end of the discovery process, the master node prints the network topology and his routing table.
A virtual IP network over AXIOM-link is also setup, and thus a remote connection to the other AXIOM
boards in the cluster is possible using the IP 192.168.17.NODEID (e.g. through ssh). All IP network
traffic on subnet 192.168.17.0/24 is tunneled trough the AXIOM-link.
On the console of one of the nodes, you can try the following AXIOM applications (the complete list
is available by typing axiom- on the console, and then the tab command twice):

axiom-info

● Prints all the information related to the AXIOM NIC (node id, interface status, rout-
ing table… etc).

axiom-ping -d 1

● Pings (talking to the axiom-init daemon running on all nodes) node 1.

axiom-netperf -d 1 -t rdma -l 100M

● Starts a netperf to node 1 with message type RDMA and a 100-Mbyte payload.
● Note, before to start the axiom-netperf client, you must start the server on the

target node using the following command:

axiom-netperf –s –n 8

Some OmpSs test applications are already installed on the AXIOM board (/opt/axiom). For exam-
ple, in order to run the Matrix Multiply application on the AXIOM cluster, the following steps must be
completed:

 cd /opt/axiom/test_ompss
 ./run_test_ompss.sh ./ompss_evimm 4 1000

It also included a script to run the Matrix Multiply with the improvements discussed in Section 7:

 ./run_test_ompss_sched.sh ./ompss_evimm 4 1000

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 14 of 31

6 Mechanisms for load balancing

6.1 Improving load balancing with OmpSs@FPGA
In the original OmpSs infrastructure, FPGA helper threads were fully dedicated to manage the FPGA
IP cores and data transfers. Usually, this leads to the loose of as much cores as helper threads the appli-
cation uses. Also, SMP worker threads are exclusively dedicated to execute SMP tasks, and have no
involvement on the management of the FPGA.

Figure 2 shows an execution trace of this version of the infrastructure, where there are 3 SMP cores
executing matrix multiplication tasks, and one helper thread taking care of the 256x256 IP core in the
FPGA. This matrix multiplication works on a matrix of 2048x2048 single precision floating point ele-
ments, on blocks of 256x256 elements, running on the AXIOM board. It is described in the AXIOM
Deliverable D4.3 [1]. As it can be appreciated, the helper thread (Thread 1.1.4 in the figure) is busy less
than 50% of the time. This fact allows to consider the possibility that this core acts also as a worker,
and the management of the FPGA gets distributed across all threads.

Figure 2 - Execution trace of matrix multiplication using 3 SMP cores and 1 FPGA IP core.

We have modified the infrastructure in order to support “hybrid workers”. A hybrid worker is going to
deal with the FPGA tasks when idle. For example, they can drain FPGA tasks that have already final-
ized, update the task graph, and release dependences of successor tasks.

With this technique, tasks execution is better balanced between the SMP cores and the FPGA, and we
have achieved an increase in performance of a few GFlops in the matrix multiplication. For example,
the previous execution with 3 SMP workers and 1 helper thread obtains 27.3 GFlops, with no hybrid
support. When the hybrid support is added, the performance increases up to 29.2 GFlops. The reason is
that the number of tasks executed in the FPGA increases as FPGA tasks finalized are released earlier
by one of the idle workers. In this particular execution view, FPGA tasks raised from 178 to 184. Figure
3 shows the instrumentation internals of the hybrid execution. Observe how in this new execution, there
are also 4 matrix multiplication tasks running in parallel (on each of the workers Threads 1.1.1, 1.1.6,
1.1.7 and 1.1.8), while the FPGA is executing tasks at a slightly higher rate than the execution without
the hybrid workers (in Figure 3).

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 15 of 31

Figure 3 - Execution of matrix multiplication with the hybrid worker and showing the instrumentation internals.

6.1.1 Future work
We think that the hybrid worker approach presented in this deliverable can also be used in GPU envi-
ronments, where there is also the need to have a number of helper threads to take care of the GPU
events. We plan to work on this direction on our future development of OmpSs@CUDA and Om-
pSs@OpenCL.

6.2 Load balancing by dataflow-thread based execution
In relation with the task T5.4, we have experimented also another advanced approach for distributing
threads across several nodes based on dataflow-threads (DF-Threads) [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20]. The XSMLL model provides a robust and fast substrate
to moderate the distributed threads across the nodes of a Multi-core/Multi-node computing system,
which include thread scheduling, and appropriate management of data consistency and synchronization.

A simplified sketch of the architecture that we have in mind is represented in Figure 4. Here the focus
is on the software components like drivers, protocols, runtime and I/O register specification (see also
Appendix 1). As we can see from Figure 4, the software components (processing system or PS) need to
queue operations through the undelaying hardware (programmable logic or PL)

CϬ Cϭ Cŵ-ϭ

XNMϭ

NOϭ

. . .

XTQϬ XTQϭ XTQŵ-ϭ
. . .

PS

PL

Netǁoƌk IŶteƌfaĐe CoŵŵuŶiĐatioŶ

. . .

CϬ Cϭ Cŵ-ϭ

XNMϮ

NOϮ

. . .

XTQϬ XTQϭ XTQŵ-ϭ
. . .

PS

PL

CϬ Cϭ Cŵ-ϭ

XNMŶ

NOn

. . .

XTQϬ XTQϭ XTQŵ-ϭ
. . .

PS

PL

Figure 4 – XSMLL hardware/software architecture. There are n nodes and m cores per node. XTQ are the XSMLL

Thread Queues and XNM is the XSMLL Node Manager that implements several finite state machines.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 16 of 31

Building on the work of previous years, we have been able to prototype this architecture by a combina-
tion of models in the simulation software (based on the COTSon framework [21], [22]) and of the high-
level synthesis (HLS) provided by the Xilinx Vivado tools. In the Appendix 1, there are the precise I/O
registers that we have defined. These registers are very important since they represent the “contract”
between hardware and software. The software, in particular, has to be aware of those registers.

Each DF-thread operates regular instructions and uses the primitive commands/instructions outlined in
D5.2 (XSCHEDULE… etc). We recall that a DF-thread expects no parameters, and also does not return
parameters. As such, it will be started once the input data are ready. This is in contrast with classical
pthreads-like execution model where a thread has direct access to any address of memory.

The most important challenges that XSMLL tries to solve are the following:

1) At the hardware level, fine grain threads are based on a dataflow execution model and can be
distributed across the nodes (FPGAs)

2) At system level, the functionality of the system should not be affected if one or more of the
Nodes are removed from the distributed system (i.e. existence of any error at any nodes)

Special direct access from the XSMLL hardware to/from the Network Interface (NI) that are both on
the PL were also modeled and designed. The following picture summarizes a possible exchange of
messages managed directly from the PL, and indirectly through the primitive commands such as
XSCHEDULE (Figure 5).

seŶd_ǆsŵll_ŵsg;id,ϭ,ϯ,flush,fpͿ

aĐĐept
foƌǁaƌd

aĐĐept

foƌǁaƌd

aĐĐept
foƌǁaƌd

ϭ Ϯ

ϯ ϰ

XSMLL Message foƌŵat:
• seŶd_ǆsŵll_ŵsg;souƌĐe, dest, tǇpe, dataͿ

Use Đase:
• The Node ϭ ǁaŶts to seŶd aŶ XSMLL

ŵessage to Ŷode ϰ

se
Ŷd

_ǆ
sŵ

ll_
ŵ

sg
;id

,ϭ
,ϯ

,fl
us

h,
fp

Ϳ

Rules of pƌotoĐol:
ϭ. The Node that ǁaŶts to seŶd a ŵessage

to aŶotheƌ Ŷode iŶto the Ŷetǁoƌk, it
seŶds a ŵessage to the Ŷeighďoƌs
geŶeƌatiŶg aŶ ID foƌ the ŵessage ďased
oŶ aŶ IŶtegeƌ + Node ID.

Ϯ. The Ŷeighďoƌs that ƌeĐeiǀe the ŵessage
ĐheĐk if theǇ aƌe the taƌget Ŷode of the
ŵessage

ϯ. If YES -> seŶds ďaĐk to the souƌĐe Ŷode aŶ
aĐk ŵessage aŶd disĐaƌd otheƌ ŵessage
ǁith the saŵe ID

ϰ. If NO -> foƌǁaƌds the ŵessage to his
Ŷeighďoƌs, eǆĐept the Ŷode that seŶt to
hiŵ the ŵessage.

AĐĐept oŶlǇ the fiƌst
ŵessage aŶd disĐaƌd the
otheƌs ǁith the saŵe ID.

Figure 5 – XSMLL message protocol.

As an example, we report the time diagram of the interactions between cores, the XTQ and other internal
queues (Figure 6). In order to verify the efficiency in distributing threads across the system we investi-
gated the following programming models OpenMPI[24], JUMP[23], and how efficient the execution is
when compared to our approach (i.e. based on the XSMLL execution model, which can rely on OmpSs
as it was outlined in D4.2).

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 17 of 31

CϬ...Ŷ-ϭ XTQϬ...ŵ-ϭ

xschedule;ip,sc,szͿ

XWTϬ...ŵ-ϭ XFFT XPTQ

put;ip,sĐ,fpͿ
update;Đid,ŶfͿ

xschedule;ip,sc,szͿ

eŵptǇ

eŶƋueue;Đid, ip, sĐͿ

fp*

eǆeĐ

fp=fƌaŵe poiŶteƌ
ip=iŶstƌuĐtioŶ poiŶteƌ
sĐ=sǇŶĐhƌoŶizatioŶ ĐouŶt
sz=fƌaŵe size
Đid=Đoƌe-id
Ŷf=Ŷuŵďeƌ of fƌaŵes

Figure 6 – XSMLL message protocol. C=core, XTQ= XSMLL Thread queue, XWT=XSMLL Waiting Table,

XFFT=XSMLL Free-Frame Table, XPTQ=XSMLL Pending Thread-request Queue.

The preliminary results of this comparison (simulation based – for a comparison with the AXIOM
boards see D7.3) are shown in Figure 7 and Figure 8. As it can be seen, XSMLL provides not only good
scalability up to 16 nodes (or boards) but also highly competitive execution times.

Ϭ.Ϭϭ

Ϭ.ϭ

ϭ

ϭϬ

ϭϬϬ

ϭ Node Ϯ Nodes ϰ Nodes 8 Nodes ϭ6 Nodes

EǆeĐutioŶ Tiŵe BMM Ϯϭ6+8 XSMLL
ǀs MPI ǀs Juŵp

XSMLL JUMP MPI

Ϭ.Ϭϭ

Ϭ.ϭ

ϭ

ϭϬ

ϭϬϬ

ϭ Node Ϯ Nodes ϰ Nodes 8 Nodes ϭ6 Nodes

EǆeĐutioŶ Tiŵe BMM ϰϯϮ+8 XSMLL
ǀs MPI ǀs Juŵp

XSMLL JUMP MPI

ϭ

ϭϬ

ϭϬϬ

ϭ Node Ϯ Nodes ϰ Nodes 8 Nodes ϭ6 Nodes

EǆeĐutioŶ Tiŵe BMM 86ϰ+8 XSMLL
ǀs MPI ǀs Juŵp

XSMLL JUMP MPI

Figure 7 – Comparison among XSMLL execution time (seconds) and OpenMPI, JUMP programming model execu-
tion. The benchmark is matrix multiplication with square matrix size of 216, 432, 864 and block size of 8. The nodes

are configured with only 1 core each.

Moreover, we think that there is still much space for further optimization of the XSMLL. In fact, by
investigating the miss rate, we noticed that the locality of the XSMLL program is still unexploited. A
policy that is under investigation is to inject the frame data into the caches before starting the execution
of the DF-thread. Note: some bars are missing due to the fact that JUMP execution crashed (bug).

Ϭ.Ϭϭ

Ϭ.ϭ

ϭ

ϭ Node Ϯ Nodes ϰ Nodes 8 Nodes ϭ6 Nodes

LϮ Miss Rate BMM Ϯϭ6+8 XSMLL ǀs
MPI ǀs JUMP

XSMLL JUMP MPI

Ϭ.Ϭϭ

Ϭ.ϭ

ϭ

ϭ Node Ϯ Nodes ϰ Nodes 8 Nodes ϭ6 Nodes

LϮ Miss Rate BMM ϰϯϮ+8 XSMLL ǀs
MPI ǀs JUMP

XSMLL JUMP MPI

Ϭ.Ϭϭ

Ϭ.ϭ

ϭ

ϭ Node Ϯ Nodes ϰ Nodes 8 Nodes ϭ6 Nodes

LϮ Miss Rate BMM 86ϰ+8 XSMLL ǀs
MPI ǀs JUMP

XSMLL JUMP MPI

Figure 8 – Comparison among XSMLL L2-cache miss rate and OpenMPI, JUMP programming model L2 miss-rate.
The benchmark is matrix multiplication with square matrix size of 216, 432, 864 and block size of 8. The nodes are

configured with only 1 core each.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 18 of 31

7 Analysis of the real-time guarantees
This Section is related to the analysis of the AXIOM stack performed by EVI, in relationship with the
possibility of providing real-time guarantees about latencies in both communication and processing.

In general, we need to start by saying that OpenMP “as is” is a parallel programming model which has
been developed to provide throughput and full utilization of multicore architectures and, in the case of
OmpSs@Cluster, cluster configurations. In general, the execution flow is based on the dynamic (at run-
time) expansion of the parallel execution graph and the consequent execution of OpenMP tasks consid-
ering their data dependencies. All this is done in a way to maximize the overall system performance,
without any consideration for real-time loads. Various efforts have been done in recent research to prove
the applicability of OpenMP in contexts related to safety, especially in avionics and automotive. These
efforts are typically composed at least by the following steps:

 Analysis of the timing behavior of the OpenMP tasking model.
 Compiler analysis tools to extract a representation of the parallel execution of an OpenMP pro-

gram in the form of a DAG.
 Schedulability tests for OpenMP applications represented with DAGs.
 Static scheduling approaches to assign threads to cores based on DAGs.
 Run-time methods to enhance time predictability.

These steps were the basis of the fundamental work that was performed during the P-SOCRATES FP7
Project [2], which resulted in the UpScale Framework [3], where partner EVI provided the runtime
operating system for running concurrent periodically scheduled OpenMP applications.

Additional efforts towards providing guarantees for real-time loads are related to the applicability of
OpenMP with the Ada language to provide parallel predictability [4].

In the work presented in this Section we will be mostly investigate how the usage of operating system
real-time mechanisms (such as priorities, and real-time schedulers such as SCHED_DEADLINE) could
impact the overall response time/latency of execution of a computational task with OmpSs@Cluster.

The starting point of the activity has been the standard Nanos++ configuration for OmpSs@Cluster. In
particular, when Nanos++ works in the cluster, it creates one "communication thread" on each node to
handle the exchange of messages and memory in the cluster. This thread, through the GASNet API,
uses the AXIOM conduit developed in this project to move memory and messages between nodes. The
communication thread is typically pinned to the fourth core, where it executes “alone” to handle the
communication in the fastest way as possible.

The first finding was related to the fact that the fourth core is not always the best for the allocation of
the communication between threads. In particular, OmpSs@Cluster typically allocates the computa-
tional threads on core 0, 1, and 2, whereas the communication thread is typically allocated on core 4.
The typical behavior of the communication thread is to actively spin while waiting for new activities to
perform on the network; on the other hand, Linux systems schedule most of the interrupts on the core
0, thus interrupting the computational threads allocated on that core. This fact is evident in Figure 9,
where we can see that core 0 has been interrupted by IRQs coming mainly from the network interface,
while core 4 (not shown in Figure 9), is basically spinning. Therefore, the first action to improve the
load balance in the system has been the move of the IRQs processing into the same core used for com-
munication, leaving in this way the computational threads free of interferences.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 19 of 31

Figure 9 - IRQs are typically scheduled on Core 0, interrupting and slowing down computational threads.

The second finding is related to the current implementation of the "communication thread", which is
done using the GASNet no-blocking API in a busy-wait loop. In this way, the latency of the communi-
cation is kept at the minimum, but this behavior has a drawback: one core is fully used by the “commu-
nication thread” without executing any task. Therefore, OmpSs@Cluster uses only N-1 cores on each
board to execute tasks, allocating N-1 “working thread” and 1 core only for communicating with the
other boards. (N = number of cores per board).

In Section 6 (and in the D4.3 deliverable), we described some possible improvements to OmpSs@Clus-
ter, related to GASNet and Nanos++ modifications made to avoid busy waits and memory copies in
order to improve performance and energy consumption. Some of those modifications required to the
Nanos++ structure are big, and because of their impact on the OmpSs@Cluster architecture they have
been implemented only partially during the AXIOM project timeframe. However, the usage of real-
time priorities and in particular of the SCHED_DEADLINE scheduler opens the possibility of reducing
the computational load of the communication thread, leaving space for additional computation to be
performed on the fourth core.

In particular, the idea of SCHED_DEADLINE (see Figure 10) is to provide the possibility to specify a
pair Budget/Period for a thread. It is then guaranteed that the thread will be able to execute a maximum
execution time equal to the budget over the defined period. A thread trying to consume more CPU (the
top one in the Figure 10) is throttled and resumed afterwards.

Figure 10 - Under SCHED_DEADLINE, a task consuming too much CPU is throttled.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 20 of 31

Therefore, the main idea to improve the real-time features of the AXIOM software was to schedule the
communication thread via the SCHED_DEADLINE feature of the Linux kernel. Since the communica-
tion thread is constantly executing, the resulting behaviour will be a throttling of the thread, which
leaves free CPU time that can be allocated to other computational threads. Note that the future imple-
mentation of the usage of blocking primitives described above can still be applied with SCHED_DEAD-
LINE. The result will be that the communication thread will be mostly sleeping waiting for events to
appear. When the communication thread wakes up because of an action to perform, the thread will be
immediately scheduled under the budget/period available at wake up, still resulting in an improved
latency despite low processor utilization.

Once the communication thread has been “gated” by giving a SCHED_DEADLINE bandwidth (defined
as the ratio budget/period), we can start to increase the system performance by slightly modifying
Nanos++ to create an extra “working thread”. In this way, we have N “working threads”, one per CPU,
plus 1 “communication thread”. We then further modified Nanos++ in order to set the scheduling pa-
rameters for each low-level pthread, to be able to fine tune the execution of each worker (in detail,
we allow the specification at runtime of the Linux scheduling policy and of the scheduling parameters
of each pthread).

The main question at this point is what is the optimal bandwidth that should be assigned to the commu-
nication thread in order to maximize the response times and latencies of the system. To evaluate this,
we performed a set of tests running a matrix multiplication application on a 2 node OmpSs@Cluster on
the AXIOM boards. The tests have been performed in a way to assign decreasing bandwidth to the
communication thread. The remaining free time has been then taken by the (additional) computational
thread allocated on the same CPU.

Qualitatively, the expectation is that when the bandwidth of the communication thread is high, the com-
munication thread mostly actively spins waiting for some activity to be performed, but no additional
computation is performed. As long as the communication thread reduces its used bandwidth, we expect
to see less active spinning, but more computation to be performed, at the expense of a slightly increased
communication latency. Initially, the performance will be worse, because giving little time to a compu-
tational thread means slowing down its task, increasing the overall latency. Increasing it further provides
a better CPU utilization and therefore a smaller execution time of the same application. The latencies
will decrease up to a given bandwidth value (that in the case of the matrix multiplication was around
5% of the CPU bandwidth), where the communication tasks to be performed are slowed down worsen-
ing the overall execution time.

Figure 11 shows this behaviour. The period of the SCHED_DEADLINE budget for the communication
task was fixed to 100 ms and the bandwidth given to it was starting at 90%, and then decreased by 20%
at each step until 30% is reached, and afterwards decreasing by 1% from 20% to 1%. In addition to the
SCHED_DEADLINE tests (blue line), we also added a test using nice (red line). nice is a feature
present on most UNIX schedulers, which demotes a given task, with the result of giving less CPU
bandwidth. This can be seen as a rough approximation of the behaviour obtained with SCHED_DEAD-
LINE, but without any kind of guarantee from the timing perspective. Figure 11 also shows the “stand-
ard” result (orange line) obtained by giving 1 entire core (100% CPU bandwidth) to the communication
thread. All the values showed in the Figure 11 and Figure 12 are an average of 5 runs of the same
experiment.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 21 of 31

Figure 11 - Execution time of a matrix multiply varying the SCHED_DEADLINE bandwidth parameter with a fixed
period (100 ms) for the Communication Thread.

Figure 11 shows that the best performance is obtained assigning 5% of CPU bandwidth to the commu-
nication task, and leaving the remaining 95% to the computational tasks.

It has to be noted that the parameters that can be selected in SCHED_DEADLINE are two (period and
budget), but in the previous examples all tests have been performed with a fixed “reasonable” period.
In order to evaluate the dependency on the choice of the period, we also did another experiment, shown
in Figure 12.

In this case, we fixed the CPU bandwidth to 5% (which is the best one found in the previous experi-
ment), and we changed the period of the task. The red and orange lines are the same of the Figure 11.
The blue line shows the impact of a change of the period in a SCHED_DEADLINE reservation: by using
a high value for the period means that the communication thread will be given coarse grained amount
of times, that likely will be spent doing some communication work, and after that will be “wasted” in
spinning until the budget ends. A small period provides more fine-grained execution, at the expense of
a greater context switch overhead (5% bandwidth with a period of 1 ms is at the limit of the precision
of the current architecture).

Another interesting finding is related to the fact that the performance at 200 ms is worse than the one at
300 ms. This may be due to the fact that the typical matrix multiplication OmpSs task in the example
has an execution time near to 200 ms, and not being able to perform the communication right after the
end of a task may imply for the communication thread a waiting of another period, thus increasing the
overall latency.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 22 of 31

Figure 12 - Execution time of a matrix multiply varying the SCHED_DEADLINE period parameter with a fixed CPU

bandwidth (5%) for the Communication Thread.

In conclusion, we believe that a proper coexistence in the same cores of the computational thread with
the communication thread in the OmpSs@Cluster in conjunction with the real-time scheduling policies
available in modern Linux kernels, provides additional benefits in terms of better overall usage of the
computational resources and lower overall execution times. We also believe that the bandwidth assigned
to the communication thread should be evaluated on a per application basis, based on the communica-
tion load of the specific case.
Starting from these considerations, the implementation of the Cluster Hybrid approach in Nanos++
described in D4.3 further enhances the performance of the system by limiting the active spinning per-
formed by the communication thread, thus de facto limiting the need of the usage of the scheduling
policies described in this Section.

8 Archives released
All the software packages and documentation included as part of this release of the AXIOM project
software stack are available for public download from the following address:
 https://download.axiom-project.eu/?dir=RUNTIME

9 Confirmation of DoA objectives and Conclusions
This document shortly described the open-source release of the software developed during the AXIOM
project. The software includes a full network stack with RDMA support, running on AXIOM boards
based on the Xilinx Ultrascale+ chip. The software also includes the complete support for the Om-
pSs@Cluster Parallel Programming Library, including support for the AXIOM cluster configuration
and the possibility to trace the software execution using the Extrae tool. An evaluation of the load bal-
ancing and of the real-time performance of the system has also been included.
Other related publications of this project can be found in the references [5]-[43].
All the DoA objectives were successfully met.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 23 of 31

10 References
1. AXIOM Consortium, "D4.3 - Evaluation of the compiler and tools infrastructure", February 2018.
2. P-SOCRATES FP7 Project, http://www.p-socrates.eu/.
3. UpScale Framework, http://www.upscale-sdk.com/.
4. Sara Royuela, Luis Miguel Pinho and Eduardo Quinones, Converging Safety and High-performance Domains: Integrat-

ing OpenMP into Ada, In the Design, Automation, and Test in Europe conference (DATE). Dresden (Germany), March
19-23, 2018.

5. R. Giorgi, “Transactional memory on a dataflow architecture for accelerating Haskell,” WSEAS Trans. Computers,
vol. 14, pp. 794–805, 2015.

6. R. Giorgi and P. Faraboschi, “An introduction to DF-Threads and their execution model,” in IEEE MPP, Paris, France,
Oct. 2014, pp. 60–65.

7. R. Giorgi and A. Scionti, “A scalable thread scheduling co-processor based on data-flow principles,” ELSEVIER Fu-
ture Generation Computer Systems, vol. 53, pp. 100–108, July 2015.

8. S. Weis, A. Garbade, B. Fechner, A. Mendelson, R. Giorgi, and T. Ungerer, “Architectural support for fault tolerance
in a Teradevice dataflow system,” Springer Int.l Journal of Parallel Programming, pp. 1–25, May 2014.

9. D. Theodoropoulos et al., “The AXIOM project (agile, extensible, fast I/O module),” in IEEE Proc. 15th Int.l Conf. on
Embedded Computer Systems: Architecture, MOdeling and Simulation, July 2015.

10. R. Giorgi, "Scalable Embedded Systems: Towards the Convergence of High-Performance and Embedded Computing",
Proc. 13th IEEE/IFIP Int.l Conf. on Embedded and Ubiquitous Computing (EUC 2015), Oct. 2015.

11. R. Giorgi, "Exploring Future Many-Core Architectures: The TERAFLUX Evaluation Framework", Elsevier, 2017, pp.
33-72.

12. R. Giorgi, "Exploring Dataflow-based Thread Level Parallelism in Cyber-Physical Systems", Proc. ACM Int.l Conf.
on Computing Frontiers, New York, NY, USA, 2016, pp. 6.

13. A. Rizzo, G. Burresi, F. Montefoschi, M. Caporali, R. Giorgi, "Making IoT with UDOO", Interaction Design and Ar-
chitecture(s), vol. 1, no. 30, Dec. 2016, pp. 95-112.

14. L. Verdoscia, R. Giorgi, "A Data-Flow Soft-Core Processor for Accelerating Scientific Calculation on FPGAs", Math-
ematical Problems in Engineering, vol. 2016, no. 1, Apr. 2016, pp. 1-21.

15. R. Giorgi, N. Bettin, P. Gai, X. Martorell, A. Rizzo, "AXIOM: A Flexible Platform for the Smart Home", Springer
Int.l Publishing, Cham, 2016, pp. 57-74.

16. P. Burgio, C. Alvarez, E. Ayguade, A. Filgueras, D. Jimenez-Gonzalez, X. Martorell, N. Navarro, R. Giorgi, "Simulat-
ing next-generation cyber-physical computing platforms", Ada User Journal, vol. 37, no. 1, Mar. 2016, pp. 59-63.

17. R. Giorgi, "AXIOM: A 64-bit reconfigurable hardware/software platform for scalable embedded computing", 6th
Mediterranean Conf. on Embedded Computing (MECO), June 2017, pp. 113-116.

18. R. Giorgi, "Accelerating Haskell on a Dataflow Architecture: a case study including Transactional Memory", Proc.
Int.l Conf. on Computer Engineering and Applications (CEA), Dubai, UAE, Feb. 2015, pp. 91-100.

19. N. Ho, A. Mondelli, A. Scionti, M. Solinas, A. Portero, R. Giorgi, "Enhancing an x86_64 Multi-Core Architecture
with Data-Flow Execution Support", ACM Computing Frontiers, May 2015, pp. 1-2.

20. N. Ho, A. Portero, M. Solinas, A. Scionti, A. Mondelli, P. Faraboschi, R. Giorgi, "Simulating a Multi-core x86-64 Ar-
chitecture with Hardware ISA Extension Supporting a Data-Flow Execution Model", IEEE Proc. AIMS-2014, Madrid,
Spain, Nov. 2014, pp. 264-269.

21. A. Portero, A. Scionti, Z. Yu, P. Faraboschi, C. Concatto, L. Carro, A. Garbade, S. Weis, T. Ungerer, R. Giorgi, "Sim-
ulating the Future kilo-x86-64 core Processors and their Infrastructure", 45th Annual Simulation Symp. (ANSS12),
Orlando, FL, Mar 2012, pp. 62-67.

22. Argollo, E., Falcón, A., Faraboschi, P., Monchiero, M., and Ortega, D. 2009. COTSon: infrastructure for full system
simulation. SIGOPS Oper. Syst. Rev. 43, 1 (Jan. 2009), 52-61.

23. B.W.L. Cheung, C.L. Wang, Kai Hwang; “JUMP-DP: A Software DSM System with Low-Latency Communication
Support”, Int’l Conf. on Parallel and Distributed Processing Techniques and Applications (PDPTA2000), pp. 445-451,
June 2000.

24. E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A.
Lumsdaine, R.H. Castain, D.J. Daniel, R.L. Graham, and T.S. Woodall, “Open MPI: Goals, Concept, and Design of a
Next Generation MPI Implementation”, In Proc. 11th European PVM/MPI Users' Group Meeting, Budapest, Hungary,
Sep. 2004.

25. L. Verdoscia, R. Vaccaro, R. Giorgi, "A matrix multiplier case study for an evaluation of a configurable Dataflow-
Machine", ACM CF'15 - LP-EMS, May 2015, pp. 1-6. DOI:10.1145/2742854.2747287

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 24 of 31

26. G. Burresi, R. Giorgi, "A Field Experience for a Vehicle Recognition System using Magnetic Sensors", IEEE MECO
2015, Budva, Montenegro, June 2015, pp. 178-181. DOI:10.1109/MECO.2015.7181897,

27. A. Mondelli, N. Ho, A. Scionti, M. Solinas, A. Portero, R. Giorgi, "Dataflow Support in x86-64 Multicore Architec-
tures through Small Hardware Extensions", IEEE Proc. DSD, August 2015, pp. 526-529.. DOI: 10.1109/DSD.2015.62

28. C. Alvarez, E. Ayguade, J. Bueno, A. Filgueras, D. Jimenez-Gonzalez, X. Martorell, N. Navarro, D. Theodoropoulos,
D. Pnevmatikatos, C. Scordino, P. Gai, C. Segura, C. Fernandez, D. Oro, J. Saeta, P. Passera, A. Pomella, A. Rizzo, R.
Giorgi, "The AXIOM Software Layers", IEEE Proc. 18th EUROMICRO-DSD, Aug. 2015, pp. 117-124.
DOI:10.1109/DSD.2015.52

29. D. Jiménez-González, C. Álvarez, A. Filgueras, X. Martorell, J. Langer, J. Noguera, K. Vissers. “Coarse-grain perfor-
mance estimator for heterogeneous parallel computing architectures like Zynq all-programmable SoC”. arXiv preprint
arXiv:1508.06830.

30. R. Giorgi, A. Scionti, "A scalable thread scheduling co-processor based on data-flow principles", ELSEVIER Future
Generation Computer Systems, Amsterdam, Netherlands, vol. 53, Dec. 2015, pp. 100-108. DOI:10.1016/j.fu-
ture.2014.12.014

31. R. Giorgi, "Exploring Dataflow-based Thread Level Parallelism in Cyber-physical Systems", Proc. ACM Int.l Conf. on
Computing Frontiers, New York, NY, USA, 2016, pp. 6. DOI:10.1145/2903150.2906829

32. C. Alvarez, E. Ayguade, J. Bosch, J. Bueno, A. Cherkashin, A. Filgueras, D. Jiminez-Gonzalez, X. Martorell, N. Na-
varro, M. Vidal, D. Theodoropoulos, D. Pnevmatikatos, D. Catani, D. Oro, C. Fernandez, C. Segura, J. Rodriguez, J.
Hernando, C. Scordino, P. Gai, P. Passera, A. Pomella, N. Bettin, A. Rizzo, R. Giorgi, "The AXIOM Software Lay-
ers", ELSEVIER Microprocessors and Microsystems, vol. 47, Part B, 2016, pp. 262-277.
DOI:10.1016/j.micpro.2016.07.002

33. S. Mazumdar, E. Ayguade, N. Bettin, S. Bueno J. and Ermini, A. Filgueras, D. Jimenez-Gonzalez, C. Martinez, X.
Martorell, F. Montefoschi, D. Oro, D. Pnevmatikatos, A. Rizzo, D. Theodoropoulos, R. Giorgi, "AXIOM: A Hard-
ware-Software Platform for Cyber Physical Systems", 2016 Euromicro Conf. on Digital System Design (DSD), Aug
2016, pp. 539-546. DOI:10.1109/DSD.2016.80

34. G. Llort, A. Filgueras, D. Jiménez-González, H. Servat, X. Teruel, E. Mercadal and J. Labarta. “The Secrets of the
Accelerators Unveiled: Tracing Heterogeneous Executions Through OMPT”. In International Workshop on OpenMP
(pp. 217-236). Springer, Cham. DOI: 10.1007/978-3-319-45550-1_16

35. R. Giorgi, N. Bettin, P. Gai, X. Martorell, A. Rizzo, "AXIOM: A Flexible Platform for the Smart Home", Springer
Int.l Publishing, Cham, 2016, pp. 57-74. DOI:10.1007/978-3-319-42304-3_3

36. R. Giorgi, S. Mazumdar, S. Viola, P. Gai, S. Garzarella, B. Morelli, D. Pnevmatikatos, D. Theodoropoulos, C. Alva-
rez, E. Ayguade, J. Bueno, A. Filgueras, D. Jimenez-Gonzalez, X. Martorell, "Modeling Multi-Board Communication
in the AXIOM Cyber-Physical System", Ada User Journal, vol. 37, no. 4, December 2016, pp. 228-235. ISSN: 1381-
6551

37. M. Wagner, G. Llort, A. Filgueras, D. Jiménez-González, H. Servat, X. Teruel, and E. Ayguadé. “Monitoring Hetero-
geneous Applications with the OpenMP Tools Interface”. In Tools for High Performance Computing 2016 (pp. 41-57).
Springer. DOI: 10.1007/978-3-319-56702-0_3

38. D. Theodoropoulos, S. Mazumdar, E. Ayguade, N. Bettin, J. Bueno, S. Ermini, A. Filgueras, D. Jimenez-Gonzalez, C.
Alvarez Martinez, X. Martorell, F. Montefoschi, D. Oro, D. Pnevmatikatos, A. Rizzo, P. Gai, S. Garzarella, B. Morelli,
A. Pomella, R. Giorgi, "The AXIOM platform for next-generation cyber physical systems", Microprocessors and Mi-
crosystems, 2017. DOI:10.1016/j.micpro.2017.05.018

39. A. Rizzo, F. Montefoschi, M. Caporali, A. Gisondi, G. Burresi, R. Giorgi, "Rapid Prototyping IoT Solutions Based on
Machine Learning", Proc. European Conf. on Cognitive Ergonomics 2017, New York, NY, USA, 2017, pp. 4.
DOI:10.1145/3121283.3121291

40. D. Theodoropoulos, D. Pnevmatikatos, S. Garzarella, P. Gai, A. Rizzo, R. Giorgi. “AXIOM: enabling parallel pro-
cessing in cyber-physical systems.” Reconfigurable Computing Workshop, Lausanne, CH. Sep 2016. Pp.1-2.

41. J. Bosch Pons, “Asynchronous runtime for task-based dataflow programming models.” Jul. 2017. Master's Thesis.
Universitat Politecnica de Catalunya.

42. S. Mazumdar and R. Giorgi. "A Survey on Hardware and Software Support for Thread Level Parallelism." arXiv
preprint arXiv:1603.09274 (2016).

43. C. Scordino and B. Morelli. “Sharing memory in modern distributed applications”. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing (pp. 1918-1921) ACM, April 2016.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 25 of 31

11 Appendix 1
1.1 Communication between XSMLL Hardware and Software
This section illustrates detailed register maps through which software and XSMLL communicate to
each other. In the other words, the memory map between these two modules is pictured in this section
as well. Table 11-1 shows associated register with their addresses and descriptions.

Table 11-1- Register maps between XSMLL and Software

Register Name Address Size Type Description
Module Ctrl Registers
XSMLL_AP_CTRL 0xB000_0000 + 0x00 32 Rd/Rw Register to enable XSMLL, check IDLE flag and check
Status Registers
VersionReg_XSMLL 0xB000_0000 + 0x10 32 ro Version Register
Status1Reg_XSMLL 0xB000_0000 + 0x18 64 ro XSMLL Status Register #1
Status2Reg_XSMLL 0xB000_0000 + 0x24 64 ro XSMLL Status Register #2
DebugNode1Reg_XSMLL 0xB000_0000 + 0x30 64 ro XSMLL Debug Register #1
DebugNode2Reg_XSMLL 0xB000_0000 + 0x3C 64 ro XSMLL Debug Register #2

Control Registers
OpcodeReg_XSMLL 0xB000_0000 + 0x48 8 Rd/Wr This field specifies the type of operation for XSMLL mod-
Arg1Reg_XSMLL 0xB000_0000 + 0x50 64 Rd/Wr One of operand of desired XSMLL instruction
Arg2Reg_XSMLL 0xB000_0000 + 0x5C 64 Rd/Wr One of operand of desired XSMLL instruction
ReturnReg_XSMLL 0xB000_0000 + 0x68 64 Rd/Wr The result/return value of desire XSML instruction
Interrupt Registers
IrqMskReg_XSMLL 0xB000_0000 + 0x74 32 Rd/Wr XSMLL Mask Interrupt Register
IrqPndReg_XSMLL 0xB000_0000 + 0x7C 32 Rd/Wr XSMLL Pending Interrupt Register

Test RX Registers
TestRxBuffer1Reg_XSMLL 0xB000_0000 + 0x84 64 Rd/Wr To test the received raw message
TestRxBuffer2Reg_XSMLL 0xB000_0000 + 0x90 64 Rd/Wr To test the received raw message
TestRxBuffer3Reg_XSMLL 0xB000_0000 + 0x9C 64 Rd/Wr To test the received raw message
TestRxBuffer4Reg_XSMLL 0xB000_0000 + 0xA8 64 Rd/Wr To test the received raw message
TestRxBuffer5Reg_XSMLL 0xB000_0000 + 0xB4 64 Rd/Wr To test the received raw message
TestRxBuffer6Reg_XSMLL 0xB000_0000 + 0xC0 64 Rd/Wr To test the received raw message

XSMLL RDMA
DmaStart 0xB000_0000 + 0xCC 64 Rd/Wr The start address of RDMA zone
DmaEnd 0xB000_0000 + 0xD8 64 Rd/Wr The end address of RDMA zone
Dest 0xB000_0000 + 0xE4 64 Rd/Wr The destination address

Initialization Registers
GlobMemStartReg_XSMLL 0xB000_0000 + 0xF0 64 Rd/Wr Start address of global memory region
GlobMemEndReg_XSMLL 0xB000_0000 + 0xFC 64 Rd/Wr End address of global memory region
GlobMemFrameSiz- 0xB000_0000 + 0x108 64 Rd/Wr Global Memory size in bytes
XRQStartReg_XSMLL 0xB000_0000 + 0x114 64 Rd/Wr Start address of XRQ memory region
XRQEndReg_XSMLL 0xB000_0000 + 0x120 64 Rd/Wr End address of XRQ memory region
XRQFrameSizeReg_XSMLL 0xB000_0000 + 0x12C 64 Rd/Wr XRQ memory size in bytes

1.1.1 Module Control Registers
1.1.1.1 XSMLL_AP_CTRL

Register Name: XSMLL_AP_CTRL
Address: 0xB000_0000 + 0x00
Size: 32 bits
Type: wr/rd

Field Name Bit(s) Init Value type Description
Ap_start 0 0 Read/Write To start the XSMLL module, user can write ‘1’ value.
Ap_done 1 1 read If XSMLL complete all its task without any internal problem this flag will be enabled.
Ap_idle 2 1 read If XSMLL is in Idle state, this flag is enabled.
Ap_ready 3 1 read If XSMLL is ready to be going to start, this flag is enabled.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 26 of 31

1.1.2 Status Registers

1.1.2.1 VersionReg_XSMLL
Register Name: VersionReg_XSMLL
Address: 0xB000_0000 + 0x10
Size: 32 bits
Type: ro

Field Name Bit(s) Init Value Description
Date 7:0 0x00 BCD format representing the Date
Month 15:8 0x00 BCD format representing the Month
Year 23:16 0x00 BCD format representing the Year
Bit_Version 31:24 0x01 Bit Stream Version

1.1.2.2 Status1Reg_XSMLL
Register Name: Status1Reg_XSMLL
Address: 0xB000_0000 + 0x18
Size: 64 bits
Type: ro

Field Name Bit(s) Init Value Description
XSMLL_Busy 0 0b0 0b0: XTQ is Idle
XWT_Empty 1 0b1 0b0: XWT is empty
XWT_Full 2 0b0 0b0: XWT is not full
XPLQ_Empty 3 0b1 0b0: XPLQ is empty
XPLQ_Full 4 0b0 0b0: XPLQ is not full
XTQ_Empty 5 0b1 0b0: XTQ is empty
XTQ_Full 6 0b0 0b0: XTQ is not full
XCRT_Empty 7 0b1 0b0: XCRT is empty
XCRT_Full 8 0b0 0b0: XCRT is not full
XFFQ_Empty 9 0b1 0b0: XFFQ is empty
XFFQ_Full 10 0b0 0b0: XFFQ is not full
XPTQ_Empty 11 0b1 0b0: XPTQ is empty
XPTQ_Full 12 0b0 0b0: XPTQ is not full
XNFFT_Empty 13 0b1 0b0: XNFFT is empty
 0b0: XNFFT is not full
XNI_Empty 15 0b1 0b0: XNI is empty
XNI_Full 16 0b0 0b0: XNI is not full
Node1_Req 17 0b0 0b0: when neighbor Node1 has sent no request
Node2_Req 18 0b0 0b0: when neighbor Node1 has sent no request
Node3_Req 19 0b0 0b0: when neighbor Node1 has sent no request
Node4_Req 20 0b0 0b0: when neighbor Node1 has sent no request
XTQ_State 22:21 0b00 0b00: Waiting State
XTQ_Req 23 0b0 0b0: No request has been generated to other nodes

1.1.2.3 Status2Reg_XSMLL
Register Name: Status2Reg_XSMLL
Address: 0xB000_0000 + 0x24
Size: 64 bits
Type: ro

Field Name Bit(s) Init Value Description
Reserved 63:0 0x0000_0000_0000_0000 Reserved

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 27 of 31

1.1.2.4 DebugNode1Reg_XSMLL
Register Name: DebugNode1Reg_XSMLL
Address: 0xB000_0000 + 0x30
Size: 64 bits
Type: ro

Field Name Bit(s) Init Value Description
Reserved 63:0 0x0000_0000_0000_0000 Reserved

1.1.2.5 DebugNode2Reg_XSMLL
Register Name: XSMLL_DebugNode2
Address: 0xB000_0000 + 0x3C
Size: 64 bits
Type: ro

Field Name Bit(s) Init Value Description
Reserved 63:0 0x0000_0000_0000_0000 Reserved

1.1.3 Control Registers

1.1.3.1 OpcodeReg_XSMLL
Register Name: OpcodeReg_XSMLL
Address: 0xB000_0000 + 0x48
Size: 8 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
OpcodeReg_XSMLL 7:0 0x00 0x01: XCTRL
Reserved 31:8 zero Reserved

1.1.3.2 Arg1Reg_XSMLL
Register Name: Arg1Reg_XSMLL
Address: 0xB000_0000 + 0x50
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
Arg1Reg_XSMLL 63:0 0x0000_0000_0000_0000 The input arguments of desired instruction

1.1.3.3 Arg2Reg_XSMLL
Register Name: Arg2Reg_XSMLL
Address: 0xB000_0000 + 0x5C
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
Arg2Reg_XSMLL 63:0 0x0000_0000_0000_0000 The input arguments of desired instruction

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 28 of 31

1.1.3.4 ReturnReg_XSMLL
Register Name: ReturnReg_XSMLL
Address: 0xB000_0000 + 0x68
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s)

Offset

Init Value Description

ReturnReg_XSMLL 63:0 0x0000_0000_0000_0000 The return value of desired instruction (if existed)

1.1.4 Interrupt Registers

1.1.4.1 IrqMskReg_XSMLL
Register Name: IrqMskReg_XSMLL
Address: 0xB000_0000 + 0x74
Size: 32 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
Reserved 31:1 zero Reserved, writes are ignored, read is zero
IrqMsgReg_XSMLL 0 0b0 0b0: Interrupt for return value is enabled

1.1.4.2 IrqPndReg_XSMLL
Register Name: IrqPndReg_XSMLL
Address: 0xB000_0000 + 0x7C
Size: 32 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
Reserved 31:1 zero Reserved, writes are ignored, read is zero
IrqPndReg_XSMLL 0 0b0 Once return value for desired instruction is ready, this bit is set by HW. This

1.1.5 Test RX Registers

1.1.5.1 TestRxBuffer1Reg_XSMLL
Register Name: TestRxBuffer1Reg_XSMLL
Address: 0xB000_0000 + 0x84
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
Reserved 63:0 0x0000_0000_0000_0000 Reserved

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 29 of 31

1.1.5.2 TestRxBuffer2Reg_XSMLL
Register Name: TestRxBuffer2Reg_XSMLL
Address: 0xB000_0000 + 0x90
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
Reserved 63:0 0x0000_0000_0000_0000 Reserved

1.1.5.3 TestRxBuffer3Reg_XSMLL
Register Name: TestRxBuffer3Reg_XSMLL
Address: 0xB000_0000 + 0x9C
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
Reserved 63:0 0x0000_0000_0000_0000 Reserved

1.1.5.4 TestRxBuffer4Reg_XSMLL
Register Name: TestRxBuffer4Reg_XSMLL
Address: 0xB000_0000 + 0xA8
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
Reserved 63:0 0x0000_0000_0000_0000 Reserved

1.1.5.5 TestRxBuffer5Reg_XSMLL
Register Name: TestRxBuffer5Reg_XSMLL
Address: 0xB000_0000 + 0xB4
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
Reserved 63:0 0x0000_0000_0000_0000 Reserved

1.1.5.6 TestRxBuffer6Reg_XSMLL
Register Name: TestRxBuffer6Reg_XSMLL
Address: 0xB000_0000 + 0xC0
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
Reserved 63:0 0x0000_0000_0000_0000 Reserved

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 30 of 31

1.1.6 XSMLL RDMA
1.1.6.1 DmaStart

Register Name: DmaStart
Address: 0xB000_0000 + 0xCC
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
DmaStart 63:0 0x0000_0000_0000_0000 The start address of dma zone in DDR

1.1.6.2 DmaEnd
Register Name: DmaEnd
Address: 0xB000_0000 + 0xD8
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
DmaEnd 63:0 0x0000_0000_0000_0000 The end address of dma zone in DDR

1.1.6.3 Dest
Register Name: Dest
Address: 0xB000_0000 + 0xE4
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
Dest 63:0 0x0000_0000_0000_0000 The destination address of DMA performance

1.1.7 Initialization Registers
1.1.7.1 GlobMemStartReg_XSMLL

Register Name: GlobMemStartReg_XSMLL
Address: 0xB000_0000 + 0xF0
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
GlobMemStar- 63:0 0x0000_0000_0000_0000 The start address of global memory region in DDR

1.1.7.2 GlobMemEndReg_XSMLL
Register Name: GlobMemEndReg_XSMLL
Address: 0xB000_0000 + 0xFC
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
GlobMemEn- 63:0 0x0000_0000_0000_0000 The End address of global memory region in DDR

1.1.7.3 GlobMemFrameSizeReg_XSMLL
Register Name: GlobMemFrameSizeReg_XSMLL
Address: 0xB000_0000 + 0x108
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
GlobMemFrameSiz- 63:0 0x0000_0000_0000_0000 The Size of global memory region in DDR in bytes

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D5.4
Deliverable name: Final operating system and documentation
File name: AXIOM_D54-v14.docx Page 31 of 31

1.1.7.4 XRQStartReg_XSMLL
Register Name: XRQStartReg_XSMLL
Address: 0xB000_0000 + 0x114
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
XRQStartReg_XSMLL 63:0 0x0000_0000_0000_0000 The start address of XRQ table region in DDR in bytes

1.1.7.5 XRQEndReg_XSMLL

Register Name: XRQEndReg_XSMLL
Address: 0xB000_0000 + 0x120
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
XRQEndReg_XSMLL 63:0 0x0000_0000_0000_0000 The End address of XRQ table region in DDR in bytes

1.1.7.6 XRQFrameSizeReg_XSMLL
Register Name: XRQFrameSizeReg_XSMLL
Address: 0xB000_0000 + 0x12C
Size: 64 bits
Type: Rd/Wr

Field Name Bit(s) Init Value Description
XRQFrameSiz- 63:0 0x0000_0000_0000_0000 The frame size of XRQ table region in DDR in bytes

1.2 Packet format between XSMLL and NIC and timing

OPERATION INPUT(bit) OUTPUT(bit)
TIME

(Clock Cycle)

Fifo_enqueue 64(Fp) 64 (Fp) 1

Fifo_dequeue 64(Fp) 64 (Fp) 1

Write_register_in BRAM(XWT) 128(fp,ip,sc) 64(ack) 1

Read_register_in_BRAM(XWT) 64(Fp) 64(FP return) 11

Write_frame_in_globalMem (DDR4) 64(Fp) 64(ack)

Read_frame_in_globalMem (DDR4) 64(Fp) 64(Fp)

