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GLOSSARY 
ARM – Instruction set architecture developed by ARM Holdings Ltd. 
ASIC – Application-specific integrated circuit 
ATLAS – Automatically tuned lineal algebra software 
BLAS – Basic linear algebra subprograms 
CNN – Convolutional neural network 
DTS – Device tree source, a description of the hardware peripherals in Linux/QEMU 
FC – Fully-connected layer 
GLFW – Open-source multiplatform library for OpenGL, OpenGL ES and Vulkan 
IP – Intellectual property 
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Mali – A GPU microarchitecture developed by ARM Holdings Ltd. 
Mercurium – OmpSs compiler 
MKL-DNN – Intel Corporation math kernel libraries for deep neural networks 
Nanos++ – OmpSs runtime 
NEON – SIMD extensions for the ARM instruction set 
NDA – Non-disclosure agreement 
OpenGL ES – Reduced specification of the OpenGL standard that targets embedded devices 
PL – Programmable logic 
PReLU – Parametric rectified linear unit 
Qt – Cross-platform application framework developed by The Qt Company 
ROC – Receive operating characteristic 
RTL – Register transfer language 
RTSP – Real-time streaming protocol 
SIMD – Single instruction, multiple data 
SMT – Simultaneous multithreading 
SoC – System on chip 
SGEMM – Single-precision floating-point general matrix multiply 
STD – Standard deviation 
SVS – Smart surveillance scenario for the AXIOM board 
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Executive summary 
This document describes the compiler and runtime support for the programming model extensions 
proposed for programming the AXIOM cluster with OmpSs [3,7], the instrumentation design for 
monitoring/tracing FPGA devices and the compiler design exploration to support the distributed clus-
ter environment using XSMLL[6]. 
 
Following the existing OmpSs support for CUDA and OpenCL, in the AXIOM project we map the 
OmpSs target device extensions onto heterogeneous nodes including accelerators based on FPGAs. 
Code annotated with the target device (fpga) and task directives is automatically offloaded by the 
Mercurium compiler onto separate files, and compiled with the FPGA tools to build the accelerator 
for the FPGA (i.e. on the programmable logic part of a System-on-Chip as the Zynq or, in general, on 
the AXIOM-fpga). These tasks will be spawned by the Nanos++ runtime system to run on the FPGA 
and or on the cores (i.e., the ARM-A9 cores in case of the Zynq SoC or, in general, on the AXIOM 
cores). Nanos++ will use a custom DMA library presented in deliverable D4.1 to take care of data 
transfers between the host memory and the FPGA devices.  
 
In the deliverable D4.1 we also presented the support for distributed cluster environments based on 
the Nanos++ runtime system and its connection to the communication layer, through specific commu-
nications software. There, we considered the use of common tools, like MPI or GASNet, and also im-
plementing our specific approach based on the XSMLL infrastructure (cf. deliverable D7.1). In this 
deliverable, we evaluate the OmpSs@Cluster using 2 emulated Zynq Ultrascale+ nodes on QEMU 
and present the approach to follow to generate code from OmpSs applications to the XSMLL runtime 
system, using the Mercurium compiler. 
 
We have used the initial evaluation of the low level communication mechanisms to transfer data to 
and from the FPGA devices (i.e., to/from the AXIOM accelerators) shown in D4.1, to implement the 
OmpSs Extensions FPGA support. Indeed, the instrumentation support implemented and presented in 
this deliverable has increased the overall insight analysis, helping to improve the OmpSs@FPGA 
runtime support and the application performance. On the other hand, we have evaluated the impact of 
using different mapping of the data in the OmpSs@FPGA applications, implementing the best one as 
the default choice of the first automatic hardware generation. It is future work to include new features 
to tune the OmpSs applications in the deliverable D4.3. For instance, using cache capabilities and in-
clude a hardware/software partition design in the compiler generation. 
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1 Introduction 

1.1 Document structure 
This deliverable is organized as follows: 

• Section 1 describes relation to other deliverables and tasks involved in it. 

• Section 2 describes the compiler support for the programming model extensions proposed for 
programming the AXIOM cluster with OmpSs. Also, we present the XSMLL design explora-
tion compiler support to generate code for distributed environments running for the XSMLL 
model. 

• Section 3 describes the instrumentation support at software and hardware level to be able to 
trace FPGA device acceleration. Also, it explains the instrumentation support developed to 
analyze the OmpSs@Cluster communication on the AXIOM cluster. 

• Section 4 shows the evaluation of the automatic generated OmpSs@FPGA using the instru-
mentation of the hardware acceleration of those accelerated applications in a Zynq-7000 SoC. 
Also, we present some preliminary results of OmpSs@Cluster on an AXIOM cluster (emulat-
ed with QEMU), using the GASNet Conduit implemented by Evidence over the API of the 
interconnection network implemented by FORTH. 

1.2 Relation to other deliverables 
This document describes the implementation of the programming model extensions, presented in the 
document “MS41 – Definition of the Programming Model Extensions” and Deliverable D4.1 “Pro-
gramming model extensions”. This deliverable is also aligned with D5.1 where the driver for the 
High-speed B2B interconnect is integrated/configured in the Linux distribution, and the deliverable 
D7.1 where different tools are presented. 

1.3 Tasks involved in this deliverable 
This deliverable is the result of the work developed in tasks: 

• T4.1: Requirement definition for the programming model extensions 
• T4.2: OmpSs programming model extensions 
• T4.3: Instrumentation of accelerated code 
• T4.4: Code generation for the AXIOM environment 
• T5.3: Parallel programming library 

2 AXIOM OmpSs Compiler Support 
In this section, we first briefly describe the OmpSs Programming Model [3], already introduced in 
D4.1. Then, we explain the extensions planned for OmpSs, to spawn tasks in the FPGA-device (an 
AXIOM accelerator), and their compiler support. Finally, the compilation support for the extensions 
needed to support the cluster version are explained for OmpSs@Cluster and a design exploration is 
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presented on how to transform application annotated with OmpSs directives, onto the XSMLL 
runtime system. 

 

2.1 OmpSs Extensions 
The OmpSs Programming Model supports the execution of heterogeneous tasks written both in 
OpenCL and CUDA, and in the distributed cluster version. Both OpenCL and CUDA options require 
the programmer to provide the OpenCL or CUDA code, and use the target clauses to move the data to 
the associated accelerator. In the AXIOM project, we are using the same technique to spawn tasks on 
the FPGA, there is a compiler to generate the FPGA bitstream implementing the task, from C/C++ 
code, or there is an existing bitstream available with a known interface to access data. For executing 
tasks in the cluster version, the programmer needs to specify the task as plain C/C++ code. Execution 
on the OmpSs@cluster version automatically allows the runtime system to spawn tasks remotely. 

The programming model will allow to parallelize applications on the AXIOM cluster, and spawn 
tasks on the FPGAs available on each board. Using OmpSs@cluster with FPGAs support, program-
mers will be able to express two levels of parallelism. 

A first level of parallelism will be targeted to the AXIOM-cores, i.e. the cores that are available on the 
AXIOM-board (e.g., the ARM-A9 cores in the case of a Zynq SoC, c.f. Deliverable D6.1). Tasks at 
this level will be spread across the AXIOM boards, as if they would be executed on an SMP machine 
(see Sections 3 and 4 of D4.1 for the distributed cluster support). 

A second level of task parallelism will be expressed through the OmpSs extensions targeting the 
FPGAs (see below, Section 2.2). 

The OmpSs Programming Model is based on two main components and some additional tools: 

• The Mercurium compiler [7] takes the source code as specified by the programmer and un-
derstands the OmpSs directives to transform the code to run on heterogeneous platforms, in-
cluding OpenCL and CUDA accelerators. This deliverable presents how the compiler has 
been extended to automatically generate and support FPGA-based accelerators. 

• The Nanos++ runtime system, which is the responsible to manage and schedule parallel tasks, 
respecting their dependences, transferring the data needed to/from the accelerators, when 
needed and the lower-level interactions.  

• Additionally, OmpSs can use the Extrae tool to generate execution traces that can be later 
visualized with the Paraver tool, and analyze their behavior. In Section 3 we present the in-
strumentation support for FPGA acceleration analysis. This support has been added at soft-
ware (Extrae, Nanos++ runtime and Mercurium compiler) and hardware level in the FPGA. 
Both Extrae and Paraver are also developed at BSC. This complements the evaluation tools 
developed in WP7 (see Deliverable D7.1). 
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The following figure shows the existing syntax used in the target and task directives in OmpSs.  

Figure 1. OmpSs target and task directive 

 

Task directive clauses act as follows: 

• in, out, and inout clauses allow the specification of the input, output only, and input/output 
ranges of data that are to be used by the task. This way, the Nanos++ runtime system takes 
care to manage the task dependences before and after executing this task. 

• concurrent and commutative allow the specification of variants of inout dependences for inout 
data. Concurrent means that data is accessed with an explicit synchronization inside the task, 
so the runtime system can exploit tasks in parallel. Commutative indicates the tasks that can 
be executed sequentially, but in any order (possibly different from the creation order). 

• priority(P) is used to specify the importance of the task. It is a hint to the scheduler, which 
may try to execute higher priority (P) tasks before lower priority tasks, always respecting the 
dependences between them.  

• label(name) provides a name for the task, specifically for the instrumentation tools. 
• shared, private, firstprivate, default, are clauses specifying the data sharing for the listed vari-

ables. They are compatible with the same clauses in OpenMP. 
• untied means that the task can change processor after blocking in a taskwait. By default, tasks 

are tied, and they execute always in the same processor after a taskwait. 
• final(expression) indicates that this task will not create inner tasks. 
• if(expression) indicates if the task can be deferred or not. If the expression evaluates to True, 

the task will be a regular task. If the expression evaluates to False, the task will be created and 
executed immediately by the same thread. 

 

 

#pragma omp target device ({ smp | opencl | cuda }) \ 

            [ implements ( function_name )] [ copy_deps | no_copy_deps ] \ 

            [ copy_in ( array_spec ,...)] [ copy_out (...)] [ copy_inout (...)]     \  

            [ndrange (dim, …)] [shmem(...) ] [file(name)] [name(name)] 

#pragma omp task [ in (...)] [ out (...)] [ inout (...)] [ concurrent (...)] [ commutative (...)] \ 

[ priority (P) ] [ label (name) ] \ 

[ shared(...)][private(...)][firstprivate(...)][default(...)] \ 

[untied][final (expression)][if (expression)] 

 {code block or function prototype}  
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Target directive clauses act as follows: 

• device specifies the specific device where this task is to run on. “smp” means the host cores, 
“opencl” indicates an OpenCL-capable device, and “cuda” a CUDA-capable device. 

• implements(function-name) indicates that this task is equivalent to the function indicated, pos-
sibly for a different device, and the runtime system is free to schedule either one in the availa-
ble device. 

• copy_deps / no_copy_deps, indicate if the dependences listed in the task directive should also 
be kept consistent / or not with the accelerator. 

• copy_in, copy_out, copy_inout list additional data that should be kept consistent with the ac-
celerator. 

• ndrange, shmem, file and name clauses provide additional arguments for OpenCL and CUDA 
target tasks, which are not relevant for AXIOM. 

Tasks can be associated to a code block or to a function. In the case of inline code annotations, tasks 
targeting the host cores are outlined as new functions by the Mercurium compiler and spawned as 
tasks to be executed on the SMP host. Tasks targeting the FPGA will be outlined by Mercurium onto 
separate files, and compiled through the Xilinx Vivado HLS to generate VHDL, finally the Vivado 
tool generate the bitstream for the FPGA [10]. Invoking tasks on the FPGA will be done by the 
Nanos++ runtime system by sending the data needed, executing by the FPGA device, and getting the 
resulting data back to the host memory.  

In the case of function interfaces annotated with the target device directive (fpga), the invocations of 
such functions will be done in the FPGA device using the same parameter passing. 

 

2.2 OmpSs@FPGA Support Implementation 
OmpSs needs to be extended to support the Zynq chip with the FPGA selected in the AXIOM project. 
The extensions to provide support for these chips in the Mercurium compiler are: 

• To incorporate a new target device named “fpga”: in addition to the current smp, cuda and 
opencl devices, the “fpga” device will notify the Mercurium compiler that the function 
annotated is to be compiled with the Xilinx Vivado HLS compiler, for the FPGA, to gen-
erate the bitstream. 

With this extension, the compiler will generate code for the runtime system specifying the tasks that 
should be run in the FPGA device. The Nanos++ runtime system will also need to be extended, in the 
following way:  

• Support to spawn tasks in the FPGA device. 
• Support for the target clauses related to data transfers: 

• Data-copy clauses (copy_in, copy_out, copy_inout): for the FPGA target, they will 
trigger the data transfer of the data specified to/from the FPGA device. 

• Dependence-copy clauses (copy_deps, no_copy_deps): for the FPGA target, they will 
indicate if, additionally, the data dependences specified in the associated task should 
be transferred or not, with the directionality associated in the dependence clauses. 
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• Support for data transfers to/from the FPGA. The Nanos++ runtime will invoke the ser-
vices of the DMA library developed to transfer data in the FPGA environment. 

• Include the FPGA device in the support of the implements clause, in order to allow sever-
al implementations of tasks to be scheduled in the available processors/devices. 

The DMA library interface [5] provides the means to allocate buffers to exchange data between the 
Linux kernel and the FPGA hardware. In the current prototype, when the FPGA has been given the 
data to operate with, the IP kernel is automatically started, and after finishing, the results can be read 
from it.  

In this section, we describe the automatic compilation to ARM32 binary and compatible bitstream 
with all the accelerators (tasks with target device fpga) from an OmpSs annotated application.  

Following Figure shows the main phases of the bitstream generation and compilation of the OmpSs 
code. With this extension, the compiler generates the code for the runtime system specifying the tasks 
that should be run in the FPGA device. The code is compiled with a backend compiler (e.g., gcc) that 
will be executed in the Zynq-ARM cores.  

This binary code (OmpSs.elf in Figure 2) will call the Nanos++ runtime with FPGA execution sup-
port. This support is based on the DMA library and the FPGA-DMA driver in the system. Indeed, the 
tasks with target device(fpga) are extracted, modified and, using the Xilinx toolchain transparently to 
the programmer, the bitstream with the FPGA accelerators is automatically generated. 

 

Figure 2. Compilation Flow 

The runtime support to spawn FPGA tasks is very aligned with the FPGA accelerator interface. They 
should be able to understand each other. The runtime support has been extended to support for the 
target clauses related to data transfers. Data-copy clauses (copy_in, copy_out, copy_inout) trigger the 
data transfers to/from the FPGA device. In addition, dependence clauses will trigger data transfers to 
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the device by default and include the FPGA device in the support of the implements clause to allow 
several implementations of tasks to be scheduled in the available processors/devices. 

The Nanos++ runtime now invokes the services of the DMA library, which is developed to transfer 
data in the FPGA environment. In terms of FPGA support, the DMA library interface provides the 
tools to interact with the Linux driver supporting the FPGA device. In the current prototype, when the 
data transferred to the FPGA hardware, the IP kernel is initiated automatically. The computation on 
the data proceeds to the end, and after finishing, the results can be read back to the host from the 
FPGA. The main DMA library primitives allow getting the number of IP accelerators present in the 
FPGA device, and the handles to operate with them. For each IP accelerator, the library allows to 
open input and output stream DMA channels to send/receive data to/from it. The library allows allo-
cating special memory buffers in kernel space to exchange data between the Linux kernel and the 
FPGA hardware. Kernel buffers are pinned to physical memory to avoid swapping them out, while a 
stream DMA transfer is in progress. Buffers can be submitted for a stream DMA transfer to/from the 
specified device. Data transfers can be monitored to determine if they are in progress, they have fin-
ished, or a transfer error has occurred. This interface is used by the Nanos++ runtime system, to drive 
the work of the IP accelerators in the FPGA. 

Therefore, the generated IP should wait for a signal to start, receiving input stream DMA data and fi-
nally can start the output stream DMA. Those signals are activated by the DMA library calls done by 
the runtime. The runtime must wait for the last activated signal in the output stream DMA data, com-
ing from the IP accelerator.  This implies that our C task should be embedded with a wrapper code 
that deals with the input and output management.  

Figure 3 shows an example of matrix multiplication that has been annotated with OmpSs directives. 
Note that this code is independent of the execution platform (i.e., cluster, nodes with FPGAs, nodes 
with GPUs.), being the runtime responsible for taking care of the task execution scheduling to the de-
vices or nodes of the cluster, transparently to the programmer. This code shows a parallel tiled matrix 
multiply where each of the tiles (BSxBS sub-matrix) is a task. A, B and C are NBxNB matrices of 
pointers to BSxBS sub-matrices. 
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Figure 3. OmpSs annotations on Matrix Multiply 

Each of those tasks has two input dependencies and an output dependence that will be managed at 
runtime by Nanos++. Those tasks will be able to be scheduled/fired to a SMP or FPGA, as it is anno-
tated in the target device directive, depending on the resource availability. 

The copy_deps clause associated to the target directive hints the Nanos++ runtime to copy the data 
related to the input and output dependencies to/from the device when necessary. Indeed, the 
copy_deps (or copy_in/out/inout clauses) will allow the FPGA mercurium phase (Figure 2) to deter-
mine which wrapper code should be generated for the task to be accelerated.   

The data transfer from the PS (Processing System – SMP ARM) to the PL (Programmable logic) us-
ing the DMA library is gathered into only one input stream to the kernel, meanwhile only one output 
stream is expected, as a result of gathering the output information in the IP. Therefore, the wrapper 
code will have three different stages: 

1. Read the unique stream data input and scatter the information among the different inputs of 
the task to be computed. 

2. Compute the FPGA task with the input data received 

3. Gather the output data resulting of the execution of the task, and gather them into a unique 
stream data output. 
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Figure 4 shows a global scheme of the wrapper that should be generated by the compiler.  For the first 
stage, note that the matrix multiply code has three inputs: a and b, where input dependences, and c 
which is input and output dependences. Therefore, the input stream should be scatter among those 
three variables, locally declared in the code (place in the BRAM once synthesized). Figure 4 shows 
the necessary code for reading the stream input data to fill the a variable. The copy is done through 
the read().data and copying into an union of an integer and a float. A pragma HLS PIPELINE II=1 is 
used in the innermost loop of the copy to maximize the throughput of the copies. We expect to 
achieve one innermost loop iteration completed per cycle. Copies for b and c variables are not shown 
in the Figure 4. Then, the kernel call and the gather code for the output stream data will follow. 

Figure 4. Wrapper: IP scheme and scatter of the stream input data for “a” variable 

In the Figure 5 we can see three more pragma HLS at the beginning of the function. Those indicates 
the type of ports that should be used in the hardware generation, and the necessary control bus. Input 
and output streams use AXI Stream (AXIS) ports.  During the second stage of the wrapper, this calls 
the original function as we seen in Figure 5. 

 

 

 

void matrix_multiply_wrapper (hls::stream<axiData> &inStream,  hls::stream<axiData> &outStream)  
{ 
#pragma HLS interface ap_ctrl_none port=return 
#pragma HLS interface axis port=inStream 
#pragma HLS interface axis port=outStream  
   union { float f; int i;} ftoi; 
    // stream inStream first matrix 
    float a[64*64]; 
    for (int i = 0; i < 64; i++) { 
        for (int j = 0; j < 64; j++) { 
#pragma HLS pipeline II=1 
            ftoi.i = inStream.read().data; 
            a[i*64+j] = ftoi.f; 
        } 
    } 
    // Same for inputs b and c 
    float b[64*64]; 
    … 
    float c[64*64]; 
    … 
    // Kernel Call 
    // Gather Code 
} 
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Figure 5. Wrapper: Kernel Call 

 

This original function code is not currently transformed neither optimized. Therefore, it is responsibil-
ity of the programmer to optimize or annotate with pragma HLS to reduce the latency or increase the 
throughput of the kernel.  

Finally, the last and third stage of the wrapper (Figure 6) consist on writing out the output stream data. 
In that case, we only have one output data coming from the kernel matrix multiply, the c variable. 

Figure 6. Wrapper: Output Stream data and last flag 

The c variable data is written in the outStream variable (output stream) using the “write(output)” 
method. Note also, that the output is a structure (axiData) that has a standard field “last” to flag the 

void marix_multiply_wrapper (hls::stream<axiData> &inStream,  
hls::stream<axiData> &outStream) 
{ 
#pragma HLS interface ap_ctrl_none port=return 
#pragma HLS interface axis port=inStream 
#pragma HLS interface axis port=outStream       
    // Scatter code 
    … 
    // Kernel call 
    ... 
    axiData output = {0, 0, 0, 0, 0, 0, 0}; 
    output.keep = 0xFF; 
    // stream out result matrix 
    for (int i = 0; i < 64; i++) { 
        for (int j = 0; j < 64; j++) { 
#pragma HLS pipeline II=1 
            ftoi.f = c[i*64+j]; 
            output.data = ftoi.i; 
            output.last = (i==Dim-1 && j==Dim-1); 
            outStream.write(output); 
        } 
    } 
} 

void matrix_multiply_wrapper (hls::stream<axiData> &inStream,  
hls::stream<axiData> &outStream) 
{ 
#pragma HLS interface ap_ctrl_none port=return 
#pragma HLS interface axis port=inStream 
#pragma HLS interface axis port=outStream      
     
    // Scatter code 
    … 
 
    matrix_multiply(BS, a, b, c); 
 
    … 
 
    // Gather code 
} 
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last element of the output stream. This is activated when the last element of the sub-matrix c is writ-
ten.  

In addition to the wrapper code for each task with target device fpga, a configuration file is being 
completed to specify the number of instances has to be generated of this task accelerator (by default 
one at this moment), frequency, and target device.  Figure 7 shows detailed description of those steps.  

Figure 7. Detailed Compilation Flow 

 

This wrapper code, the original kernel C code of all the tasks with target device of an application, the 
configuration file including all the information related to each of the tasks, will be passed through the 
Vivado HLS as shown in Figure 7 to synthesize them. The process will be successful if the overall re-
sources of the synthesis of all the tasks likely fits in the target device indicated in the configuration 
file. 

Finally, if no error happens, the compilation framework will create a Vivado project using TCL 
scripts. The IP’s are properly connected using DMA engines and Interconnection IPs to the Process-
ingSystem7, at the same time that the interruptions are enabled. 

Thus, a bitstream will be generated for the target device with all the tasks. The FPGA should be con-
figured with this bitstream, previously to the execution of the OmpSs application.  
 
The compilation command line to compile a matmul_example.c, including the OmpSs annotations on 
tasks, and the target device fpga, and to generate the bitstream is the following: 
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fpgacc -k --verbose -o matmul_example --variable=bitstream_generation:ON matmul_example.c  
 
First, the wrapper code is generated during the FPGA bitstream generation phase analysis. Figure 8 
shows how it detects that the bitstream generation is active. In addition, we can see that there is a 
mechanism to indicate the board name, the device name and other relevant information. 

Figure 8. Automatic compilation: FPGA Mercurium phase is activated 

Then, the process continues with the synthesis, hardware design generation and implementation, and 
bitstream generation. This process may last for several minutes, depending on the target device and 
the IPs to be generated. It will start generating the configuration file, processing each of the kernels 
and going through the Vivado HLS. The compilation process shows how they are being synthesized, 
as we seen in Figure 9. 
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Figure 9. Automatic compilation: Vivado HLS synthesis of the matrix_multiply kernel: 
at the beginning (top) and at the end (bottom) 

Once all the kernels are synthesized, the process will report the overall amount of resources necessary 
for those IP, as we can see in Figure 10. If the reports indicate a number larger than 100%, the process 
stops. Otherwise, the process continues with the generation of the Vivado project with the IP inside 
(Figure 10).   

 

Figure 10. Automatic compilation: Vivado HLS Report 
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The Vivado project generation starts with the block design generation, then, hardware synthesis, 
hardware implementation, and finally, bitstream generation. Figure 11 shows timestamps of the pro-
cess for an OmpSs application.  
 

 
… 

 
… 

 
… 

 
Figure 11. Automatic compilation: timestamps of the hardware compilation process 

 
This process can last for several minutes and an IP cache is automatically generated, so that part of the 
synthesis can be skipped. The compilation framework also allows avoiding generation of the bit-
streams, if it has been already generated for that OmpSs application.  
 
For the PS part, the source-to-source Mercurium compiler will generate an intermediate code, with the 
Nanos++ runtime calls and the creation of data structures necessaries for the proper creation and sub-
mission of the tasks of OmpSs programming model. Mainly, the necessary data structures are the in-
put/output/inout dependence and copy input/output/inout data to be transferred.   
 
The main two Nanos++ calls are: 

1. nanos_err_t nanos_create_wd_compact(...) 
2. nanos_err_t nanos_submit(...) 

 
The first one creates the work descriptor of the task with all the necessary information. The second 
one introduces the task in the task dependence graph of the runtime. With this task dependence graph 
the runtime knows when a task is ready for the execution (is ready to be fired). Ready tasks are exe-
cuted by threads. In the case of task going to a device, it may be necessary to copy data to the device 
and, after executing it, copy back the data. Those copies are specified by the copy clauses. 
 
Figure 12, Figure 13, and Figure 14 show different parts of the intermediate code generated by the 
Mercurium compiler. This intermediate code can be obtained using the compiler option “-k” in the 
compilation, as shown previously. 
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Figure 12 shows the section code where the work descriptor of the task is created. This code is auto-
matically generated by Mercurium for each task instance in the code. 

 
Figure 12. Intermediate Code: Work Descriptor Creation 

Figure 13 shows the data dependence structure creation. This structure is an array of structures, where 
each element of the array contains the information of the size of the data, the lower boundary index, 
and the direction (input/output/inout) information.  

 
Figure 13. Intermediate Code: Data Dependences Structure Creation and Initialization 



Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era 
Grant Agreement Number: 645496 
Call: ICT-01-2014: Smart Cyber-Physical Systems 
 

Deliverable number: D4.2 
Deliverable name: Axiom Code Generation and Instrumentation 
File name: AXIOM_D42-v10.docx  Page 21 of 53 

Finally, Figure 14 shows the section of code where the copy data structure is created. This structure, 
together with the data dependence structure is included into the work description, and used to submit 
the task with nanos_submit(...). 
 

 
Figure 14. Intermediate Code: Copy Structure Creation and Initialization 

At runtime, the Nanos++ runtime will deal with the task dependence graph and the execution of the 
task by the worker threads. In case of having to submit a task to hardware accelerator, all the infor-
mation regarding the accelerators is already available to the runtime using a configuration file and the 
device tree of the system.  
 
The instrumentation of the hardware acceleration and the necessary hardware support is explained in 
Section 3. This novel feature will allow the programmer to analyze the performance of the memory 
transfers and computation of the task, and to decide new approximations to the section code compu-
ting a specified task. Therefore, the programmer may want to use the implements clause to have opti-
mized code for a certain part of the code. An example of how to use the implements clause follows: 
 

#pragma target device(smp)  
#pragma task ...  
software_task(){...}  
 
#pragma target device(fpga) implements(task)  
#pragma task ... 
fpga_optimized_task(){...}  
 

The automatic compilation will generate the bitstream for this accelerator and will be available for 
any exectution of the accelerated task of the software_task, using the synthesized code of 
fpga_optimized_task function. 
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2.3 OmpSs@Cluster Support Implementation 
The OmpSs@Cluster [2] infrastructure uses a communication layer to launch tasks in remote nodes. 
Task descriptors and data travel on the communication layer. In our current implementation, this layer 
is GASNet [1], usually running on top of MPI [4]. Other alternatives to implement this approach were 
presented in Section 3 of the deliverable D4.1. The underlying communications layer was presented in 
Section 4 of the deliverable D4.1. 

Figure 15 shows an architectural view of the various options under exploration. We highlight the fol-
lowing main architectural components: 

• The Mercurium source to source compiler; 
• The Nanos++ Runtime library; 
• A set of Nanos++ "targets". The interesting ones for this Section are the "cluster" target and 

the new "XSMLL" target developed in the context of the AXIOM Project (see later); 
• The GASNet layer used for the implementation of the "cluster" target; 
• The GASNet "conduits", which are basically plugins that enable GASNet to run on different 

transport (network) layers. Please note MPI and UDP, which are the ones on which Om-
pSs@cluster typically works, and in addition to these, please note the new XSMLL and AXI-
OM conduits in development in the context of the AXIOM Project (see later); 

• The XSMLL Layer, providing fine-grained task dataflow; 
• The FORTH Message Passing / RDMA networking support, implemented in FPGA and avail-

able to the ARM cores of the Xilinx Zynq microcontroller used in the AXIOM boards.   

For the baseline development in the AXIOM project, we are following option 1 of Figure 15. The 
straightforward way of integrating OmpSs with the AXIOM-link interconnect by FORTH is to oper-
ate at the level of OmpSs@cluster, providing a so-called "conduit" of GASNet. A "conduit" of 
GASNet is a plugin of GASNet that allows the implementation of the full GASNet API on top of a 
"transport layer". 

Currently, GASNet has various transport layers that can be used, starting from the simple UDP layer, 
to MPI, Infiniband and others. The approach here is to use the re-implemented GASNet conduit API, 
using the Linux Kernel Driver in development in Task 5.1. This implementation takes advantage of 
the RDMA support provided by FORTH for the AXIOM-link interconnect, in a way similar to the In-
finiband conduit. For more information about the GASNet conduit implemented on top of the AXI-
OM NIC API, please refer to Deliverable D5.2. 

Therefore, it is not necessary to give any support from the point of view of the code generation with 
Mercurium, neither the Nanos++ runtime, to allow the remote execution of tasks. The runtime will 
call the GASNet, and the GASNet conduit will do all the work of dealing with the API of the hard-
ware communication layer. 

Under the compiler point of view, the only special thing that the programmer has to do is to specify 
copy_deps in the clause of the target device. With this, the OmpSs@Cluster runtime will take care of 
doing the copies to the remote node where a task is going to be executed. 
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Figure 15. Architectural view related to the support of distributed environments. 

2.4 Exploration of the Mercurium Integration with XSMLL 
The feasibility of the integration of the Mercurium compiler code generation on top of the XSMLL 
runtime has been evaluated as a cooperation between BSC and UNISI. This option for code genera-
tion was initially introduced in Deliverable D4.1, as the Option 3 for the AXIOM support for distrib-
uted environments. With it, we are considering the possibility that the XSMLL execution model could 
be directly integrated into Mercurium, to provide direct XSMLL code generation from OmpSs code. 

This task has consisted on examining the existing XSMLL examples running on the COTSon [8,9] 
simulation environment. As a result, we have first derived an OmpSs version for those benchmarks, 
and later established the rules to transform the OmpSs tasks towards code calling the XSMLL 
runtime. Along with these transformations, we have also determined which will be the restrictions set 
to the OmpSs programs for the transformation to the XSMLL environment to be possible. The result-
ing model is slightly different from the original OmpSs semantics, in such a way that the task graph is 
built at compile time, and the dependences among tasks are considered to have a global scope. 

2.4.1 OmpSs Simple Application: Matrix Multiply 
We have coded a matrix multiplication example in OmpSs with the same structure as the matrix mul-
tiply (mmx) example provided by the XSMLL runtime system. In the version of the code running on 
the XSMLL runtime, at the top level of task creation, we observe the code shown in Figure 16. As it 
can be observed, during code generation, the compiler will need to have the XSMLL identifier, repre-
sented by the type xtid_t, of matrix_multiply to be provided to the previous task Fill_matrix, before 
executing the latter. In the same way, the compiler needs the XSMLL identifier of Report_results to 
be provided to matrix_multiply. As a result, this means that both source and sink tasks of the depend-
ences need to be created before the compiler can issue the code to establish the link between them. 
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This is different from the OmpSs model, on which tasks can start execution before the sink of the de-
pendence has been created. 

There is another difference between the OmpSs approach and XSMLL. Observe the creation of the 
task Re-port_results. It is given a number of dependences of N/BLOCKSZ. For the Mercurium com-
piler to provide this value, it is needed that the compiler sees all the tasks created that are the source of 
these N/BLOCKSZ number of dependences. With the Mercurium compiler infrastructure this is only 
possible if all tasks are created on the same compilation unit, being this a function or a subroutine. To 
do it, otherwise, we will need the compiler to perform interprocedural analysis, to account for those 
tasks present on different functions, called from the current context, with source dependences on the 
same data. 

. 

Figure 16. Code snipped to create and link tasks together in the XSMLL mmx sample. 

 

After this analysis, the OmpSs code derived from the mmx XSMLL sample is presented in Figure 17. 
On the OmpSs code, all tasks are found in the same function. There are 3 high level tasks, Fill_matrix 
is the first one, which initializes the 3 matrices (A, B, and C) and computes a checksum (scs), which is 
later used for the verification of the obtained results. The second task, Matrix_multiply, takes the 3 
matrices, and creates the inner tasks (as many as N/BLOCKSZ), that will actually perform the matrix 
multiplication in parallel (bmmul). The third and final top-level task is Report_results, which takes C, 
and checks that the result is correct. 

Within the Mercurium compiler, this kind of source codes is analyzed in two steps. In the first step, 
the internal compiler data structures is built based on the source code and the task annotations. In the 
second step, the code is analyzed to determine which tasks depend on data generated by other tasks. 
For example, from the code shown in Figure 17, the task Matrix_multiply will be determined to de-
pend on the task Fill_matrix, because the three A, B, and C variables are written by Fill_matrix, and at 
least read by Matrix_multiply (A and B are read, and C is read and written). 

Determining the dependences between a task and previous tasks with inner level tasks, as it is the case 
of Report_results and Matrix_multiply, will be implemented based on the symbols listed in the de-

// create the three main tasks 
//  1. Fill_matrices 
xtid_t xfill = xschedulez(&fill_matrix, 1, sizeof(fill_matrix_s)); 
//  2. Matrix_multiply 
xtid_t xmmx = xschedulez(&owm_matrix_mul, 1, sizeof(owm_matrix_mul_s)); 
//  3. Report_results 
xtid_t xreport = xschedulez(&report, N / BLOCKSZ, sizeof(report_s)); 
... 

// link Fill_matrices and Matrix_multiply, so that 
//  when Fill_matrices finishes, it fires Matrix_multiply  
fill_matrix_s *xf_fp = xpoststor(xfill); 
xf_fp->xmmx = xmmx; // Fill in xtid_t of frame struct. 
 
// link Matrix_multiply and Report_results, so that 
//  when Matrix_multiply finishes, it fires Report_results 
owm_matrix_mul_s *xm_fp = xpoststor(xmmx); 
xm_fp->xreport = xreport; // Fill in xtid_t of frame struct. 
... 
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pend clauses of the tasks involved. In this example, dependences for Report_results will account the 
N/BLOCKSZ iterations of the loop creating tasks in Matrix_multiply. Although computing the 
amount of dependences may not be always possible, we think that we can support tasks created within  
loop nests on which the number of iterations can be computed with an expression.  

Figure 17. OmpSs version of the mmx XSMLL sample. 

int main () 
{ 
    int i, j, nb; 
#pragma omp task depend(out: A[N][N], B[N][N], C[N][N], scs) label(Fill_matrix) ... 
   { 
    // C = 0 
    // Initialization of C to 0 
    ... 
    // B 
    for (i = 0; i < N; i++) { 
        cr = 0; 
        for (j = 0; j < N-1; j++) { 
            int val1 = rand()&0xFF; 
            cr = (cr + val1) &0xFF; 
            B[i*N+j] = (DATA)val1; 
        } 
        B[i*N+N-1] = (DATA)cr; 
    } 
    // A 
    for (j = 0; j < N; j++) { 
        // initialize A, similarly to B 
    } 
    // Calculate the SuperCheckSum 
    for (i = 0; i < N; i++) { 
        superchecksum = (superchecksum + (uint64_t)(A[(N-1)*N+i]) * 
                                         (uint64_t)(B[i*N+N-1]))&0xFF; 
    } 
    *scs = (superchecksum<<2)&0xFF; 
   } 
 
#pragma omp task depend(in:    A[N][N], B[N][N]) \ 
                 depend(inout: C[N][N]) private(i,j) label(Matrix_multiply) 
   { 
    for (j=nb=0; j<N; j+=BLOCKSZ,++nb) { 
       #pragma omp task depend (in:    A[j:j+BLOCKSZ], B[N][N]) \ 
                        depend (inout: C[j:j+BLOCKSZ]) label(bmmul) 
       { 
         for (j = 0; j < BLOCKSZ; j++) { 
            for (i = 0; i < N; i++) { 
               DATA t = 0; 
               for (k = 0; k < N; k++) { 
                  t += A[j * N + k] * B[k * N + i]; 
               } 
               C[i + (j * N)] = t; 
            } 
         } 
       }  // end of task 
    } 
   } 
#pragma omp task depend(in: C[N][N], scs) private(i,j) label(Report_results) 
   { 
    int ok = 1; 
    print_matrix (C, N, N); 
      // Verify the SuperCheckSum 
    uint64_t xchecksum = 0L; 
    for (i = 0; i < N; i++) {   // i = row pointer 
        for (j = 0; j < N; j++) { // j = column pointer 
            xchecksum = (xchecksum + (int)(C[i*N + j])) &0xFF; 
        } 
    } 
    if (scs==xchecksum) ok = 1; else ok = 0; 
    printf("CHECKSUM=%lu vs %lu   OK=%d\n", xchecksum, scs, ok); 
    printf("\n*** %s ***\n", ok ? "SUCCESS" : "FAILURE"); 
   } 
 
#pragma omp taskwait 
} 
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While data participating in task depend clauses will be included in the task frame context, variables 
used internally will be considered as firstprivate. This is the same default behavior that OmpSs (and 
OpenMP) define for variables not listed on task data sharing clauses. Variables can also be established 
to be private to the task, by using the private clause in the OmpSs code. Such private variables will be 
declared inside the function defined for the task.  

2.4.2 Code transformations 
After the analysis of the sample code, the following code transformations are planned on the Mercuri-
um compiler. On the first place, the code of the main function needs to be transformed to implement 
task creations through calls to the XSMLL runtime. Secondly, each task will be outlined in its own 
function, in order to give the possibility to the runtime system to execute it on another thread.  

The code generated in the function spawning the tasks has to deal with task creation and data depend-
ences from tasks. As a first example, in Figure 18 we show the creation of the Fill_matrix task, and 
how its data references are set. Data is laid out internally by the XSMLL runtime system following 
the offsets and sizes (second and third parameters in xsubscribe). The resulting pointer to the starting 
location of the data is then assigned to the task frame, in the field indicated by the XDST macro. The 
last parameter, the read/write mode is used by the XSMLL runtime to implement the data coherency. 
The runtime systems tracks the use of this data, in order to forward the data to the destination tasks.  

Figure 18. Code creating the Fill_matrix task from the main function  

 

As a second example of task creation, we show the code that creates the inner tasks of Ma-
trix_multiply. In this case, such inner tasks are created inside the for loop present in the source code, 
to implement the task spawning.  Figure 19 shows the transformed code. For each iteration of the 
loop, one additional task is created, and linked to the final Report_results task. This way, we use a 
global dependence name space, on which tasks at different levels can interact to each other. The link 
to the Report_results task can only be done if such task is created earlier. This is implemented correct-
ly in the current example, as it will be created by the main function in advance to executing the Ma-
trix_multiply task. Matrix_multiply is also linked to Report_results, in such a way that the Ma-
trix_multiply function can access its frame context to get the reference to Report_results and assign it 
to the bmmul tasks.  

xtid_t xfill = xschedulez(&fill_matrix, 1, sizeof(fill_matrix_s)); 
xtid_t xmmx = xschedulez(&owm_matrix_mul, 1, sizeof(owm_matrix_mul_s)); 
... 
// subscribe Fill_matrix to (in and) out data 
xsubscribe(XDST(xfill, fill_matrix, A), 2*SIZE(N, N), SIZE(N, N), _OWM_MODE_W); 
xsubscribe(XDST(xfill, fill_matrix, B),   SIZE(N, N), SIZE(N, N), _OWM_MODE_W); 
xsubscribe(XDST(xfill, fill_matrix, C),            0, SIZE(N, N), _OWM_MODE_W); 
xsubscribe(XDST(xfill, fill_matrix, scs), 
                                  3*SIZE(N, N), sizeof(uint64_t), _OWM_MODE_W); 
 
// link Fill_matrices and Matrix_multiply, so that 
//  when Fill_matrices finishes, it fires Matrix_multiply  
fill_matrix_s *xf_fp = xpoststor(xfill); 
xf_fp->xmmx = xmmx; // Fill in xtid_t of frame struct. 
... 
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Each bmmul task is also subscribed to its input and output data, and, in this way, the XSMLL runtime 
ensures that before their execution, the data will be accessible. 

 

Figure 19. Code creating the bmmul tasks from Matrix_multiply  

On the second transformation needed for the Mercurium compiler, each task will be outlined on its 
own function, including the declaration of the data type that will represent its frame context. Figure 20 
shows this code, describing how the parameters are accessed. In particular, each task gets access to its 
frame context using the xpreload XSMLL service, and uses the data structure defined to use its input 
and output data. At the end of the task, the XSMLL xdestroy service is used to destroy the underlying 
thread. 

 

Figure 20. Code of the function outlined for the Report_results task  

 

// structure representing the frame context of Report_result 
typedef struct { DATA * C; uint64_t *scsp; } Report_results_s; 
void Report_results() 
{ 
   const Report_results_s *crr = xpreload(); 
   const DATA *C = crr->C; 
   const uint64_t *scsp = crr->scsp; 
   uint64_t scs = *scsp;    
   int i, j;  // i, j variables are listed as private in the OmpSs code 
   int ok = 1; 
   print_matrix(C, N, N); 
    /// code is the same as in the OmpSs task 
   ...   
   xdestroy();   // all tasks end with the call to the XSMLL xdestroy service  
} 

void Matrix_multiply() 
{ 
 const Matric_multiply_s * fp = xpreload(); 
 xtid_t xreport = fp->xreport; 
 for (j=nb=0; j<N; j+=BLOCKSZ,++nb) { 
 
   xtid_t bm = xschedulez(&bmmul, 1, sizeof(bmmul_s)); 
   /* Region A (size N*BLOCKSZ) stores the block of matrix A  */ 
   /* Region B (size N*N)       stores the entire matrix B */ 
   /* Region C (size N*BLOCKSZ) stores the computed result.  */ 
   xsubscribe(XDST(bm, bmmul, A), (N*N+N*j)*sizeof(DATA), 
                                         N*BLOCKSZ*sizeof(DATA), _OWM_MODE_R); 
   xsubscribe(XDST(bm, bmmul, B), (N*N)*sizeof(DATA),  
                                             (N*N)*sizeof(DATA), _OWM_MODE_R); 
   xsubscribe(XDST(bm, bmmul, C), (N*j)*sizeof(DATA),  
                                         N*BLOCKSZ*sizeof(DATA), _OWM_MODE_W); 
 
   // finish barrier 
   bmmul_s* bm_fp = xpoststor(bm); 
   bm_fp->xreport = xreport; 
   xdecrease(bm,1); 
 } 
} 
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2.4.3 OmpSs to XSMLL Source Code Transformation Restrictions 
Given the example shown on the previous section, and the possibilities shown to transform it to 
XSMLL code, the following are the restrictions we have determined on the input OmpSs source code 
to be able to be transformed: 

- All annotated code must be visible within the same function or subroutine. Either automatic 
or hand-coded inlining can be used to achieve this. 

- All code must be enclosed in tasks. There can be no code in between tasks, because its execu-
tion would not be done in the proper order. 

- Each task accesses data provided on in/out depend clauses, having effects outside of the task, 
or it accesses internal local variables. The task must not have other side effects on data in ad-
dition to the dependent data. 

- Functions called from the transformed compilation unit should not access the data used in 
tasks depend clauses, as they will not be properly transformed. Instead, for that code to work 
properly, it should be inlined within the compilation unit with the annotations. 

- The code under transformation must have a single taskwait directive at the end. Taskwait is 
not supported in any other context, as there is no way to stop a running thread in XSMLL, to 
wait for the previously created tasks. 
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3 Instrumentation Support 
In this section, we present the instrumentation support for both OmpSs@FPGA to be able to instru-
ment FPGA acceleration, and for distributed environments. For the latter, we present the Om-
pSs@Cluster instrumentation support over Ethernet and the GASNet conduit implemented by Evi-
dence to support the High Throughput Interconnection link of FORTH. 

3.1 FPGA Instrumentation Support 
Having different types of hardware accelerators available, each with their own specific low-level APIs 
to program them, there is not yet a clear consensus on a standard way to retrieve information about the 
accelerator's performance. To improve this scenario, OMPT is a novel performance-monitoring inter-
face that is being considered for integration into the OpenMP standard. OMPT allows analysis tools to 
monitor the execution of parallel OpenMP applications, by providing detailed information about the 
activity of the runtime through a standard API. For accelerated devices, OMPT also facilitates the ex-
change of performance information between the runtime and the analysis tool. We have implemented 
part of the OMPT specification, that refers to the use of accelerators, both in the Nanos++ parallel 
runtime system and the Extrae tracing framework, obtaining detailed performance information about 
the execution of the tasks issued to the accelerated devices to later conduct insightful analysis. 

In this section, we discuss the extensions developed for the Nanos++ runtime library and the Extrae 
instrumentation package to comply with the OMPT standard performance-monitoring interface [11]. 

To support the OMPT interface for tools, the runtime has to maintain information about the state of 
the execution, and provide a set of callbacks to notify a tool of various runtime events during the run, 
such as thread begin/end, parallel region begin/end, and task region begin/end, among others. Mean-
while the tool must implement these callbacks to retrieve the information emitted by the runtime, and 
process and store it as required. 

Regarding accelerators, OMPT proposes two mechanisms to pass information to the tool. On the one 
hand, the Native Record Types interface (see Section 6.2 of the OMPT API[11] enables to invoke na-
tive control functions directly on the accelerator, binding the implementation to the architecture. On 
the other hand, the OMPT Record Types are a set of standard events that express the activity of the 
accelerator. These events are a generic abstraction of the activity of the device that unifies different 
types of hardware accelerators. We have opted to rely on the use of OMPT Record Types, so the tool 
is always agnostic of the underlying devices, with the consequent advantages of reducing software 
dependencies. 

The sections below describe the modifications applied both to the Nanos++ runtime as well as to the 
Extrae instrumentation library. The extensions in Nanos++ include the addition of new query services 
to instrument the FPGA device, a reshaping phase of this information into Nanos++ internal events 
and the extension of the OMPT plugin. First, to capture and handle these new device events and then 
completing the callback interface established with the tool. On the tool side, the extensions in Extrae 
include support for the tracing buffer management during the program's execution, as well as consid-
erations about the data representation for analysis. 
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3.1.1 Compiler Support 
To generate a bitstream in a platform with hardware accelerators with instrumentation support, a 
compiler option should be provided. In this case, the wrapper will have additional ports to access to 
the hardware support for profiling. This port provides a mechanism to read the timing information to 
measure the DMA memory transfers and the computation time inside the FPGA.  

Figure 21 shows a skeleton of an IP with profiling support.  

 

Figure 21. Wrapper: IP scheme with profiling information 

The IP will read the timing information through the m_axi port (read_hw_timer functions) before and 
after each DMA transfer, and before and after the kernel execution. Finally, this information is copy 
back to the PS Memory using again the m_axi port. The address of the timing information and where 
to copy back the hardware counters are provided at execution time by the runtime, when invoking the 
task acceleration. All the mechanism to keep this instrumentation is explained in next Section. 

3.1.2 Nanos++ Runtime Support 
Nanos++ is a library designed to serve as runtime support for parallel environments. It is mainly used 
to support OpenMP-like programming models by providing services to exploit task parallelism syn-
chronized by means of data-dependencies. Tasks are run by user-level threads when their data-
dependencies are satisfied. The runtime also provides support for maintaining coherence across dif-
ferent address spaces (such as GPUs, cluster nodes or FPGAs). 

One of the principles of design of the Nanos++ Runtime Library is modularity. Figure 22 shows a 
simplified schema of the Nanos++ modules involved in the management of the accelerated devices 
and the instrumentation mechanisms, and how these modules interact. For each supported hardware 
device, Nanos++ provides a specific plug-in that implements all the necessary logic to execute a task 
in the target architecture. 

void matrix_multiply_wrapper (hls::stream<axiData> &inStream,  hls::stream<axiData> &outStream. counter_t __data[4])  
{ 
#pragma HLS interface ap_ctrl_none port=return 
#pragma HLS interface axis port=inStream 
#pragma HLS interface axis port=outStream  
#pragma HLS interface m_axi port=__data 
 ... 
   counter_t  __counter_reg[4]={0x0,0x0,0x0,0x0}; 
 
  __counter_reg[0] = read_hw_timer(__data); 
   // Read data 
  __counter_reg[1] = read_hw_timer(__data); 
    // Kernel Call 
  __counter_reg[2] = read_hw_timer(__data); 
    // Write data 
  __counter_reg[3] = read_hw_timer(__data); 
 
   write_counters_memory(__data, __counter_reg); 
} 
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Figure 22. Nanos++ Runtime Library partial class diagram: device components and instrumentation 

The execution of a task on a device that works with a different memory address space, such as the 
case of FPGAs, involves several steps. In this case, the device plug-in is responsible for the allocation 
and copy of input data to the device memory, issue the task for execution, and deallocate and copy re-
sults back to the host. 

The instrumentation support for the executed tasks is also provided by plug-ins as TDG and OMPT. 
TDG is an example of monitoring tool that provides a graphical representation of the program's tasks 
dependencies. In this work, we added the new instrumentation plug-in to support OMPT, which will 
be used by the FPGA device to provide performance information regarding the execution of the tasks 
on the accelerator. 

The device plug-in notifies about the activity of the hardware using a set of internal events represent-
ing the state of the accelerator (i.e. copying data and running a task) to the OMPT plug-in. In turn, the 
OMPT plug-in stores these events in separate memory buffers for each active device. This requires to 
develop mechanisms to manage the creation of event buffers, as well as query services (e.g. register a 
new device, number of devices, device identifier, target identifier) to associate the devices with their 
corresponding buffers. 

The device plug-in is also responsible for retrieving the time-stamps in which the hardware produces 
the events, and provides this information to the OMPT plug-in. The FPGA hardware timings may not 
be based on a real-time clock, but on internal clock cycles counters. For this reason, the device plug-in 
needs to provide a mechanism to query and translate the hardware timings into unified time-stamps, 
according to the OMPT standard. 

All the events stored in the OMPT plug-in from the devices are assembled into OMPT Record Types, 
a set of standard events designed to exchange data between the runtime and the tool. When the buffers 
are full, or on demand by the tool, the runtime will provide the event information to the performance 
tool through several callbacks set during the initialization phase. Then, the tool will parse the infor-
mation through a set of iterator routines for the OMPT Record Types, which the instrumentation plug-
in provides. This process is explained in detail in the next Section. 
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3.1.3 Extrae Instrumentation Tool Support 
The Extrae instrumentation framework has been accordingly extended to implement the OMPT stand-
ard in order to monitor the activity of the parallel runtime, enabling to capture performance infor-
mation about the work offloaded to hardware accelerators. The information collected will help the an-
alyst to understand which application's tasks are executed on which device, as well as their duration. 

Integrating the OMPT interface on the tool side involves two main design aspects; the first one con-
cerns the data storage and management. Most accelerators do not have a local memory to allocate in-
strumentation buffers in which to store the tracing events, neither access to the I/O subsystem to store 
them. To circumvent this limitation, our solution relies on hosting the tracing buffers for the accelera-
tors on the host processor's main memory. The tool is then responsible for allocating the memory for 
the events that the runtime will produce and storing the data to disk, while the emission of the events 
is delegated to the runtime.  

The second issue refers to the data representation for the analysis. It is important that the tool presents 
a clear view of which task ran on which accelerator. There are two main representations, the first as-
sign one timeline for each host H and one timeline for each accelerator A (for a total of H+A time-
lines). The second show one timeline of each accelerator for each host (resulting in HxA time-lines). 
Thereby, each accelerator timeline only contains the activities that originate on the according host. 
We chose the latter because it allows visualizing more clearly the interactions between host and accel-
erator. Furthermore, we split each accelerator timeline into its main logical components (kernel com-
putation, input and output memory transfers) to highlight the chain of execution and the tasks' data 
dependencies. 

Figure 23. Simplified call sequence between the monitoring tool, runtime and accelerator device 

From the implementation standpoint, a simplified call sequence interaction between the tracing tool, 
the runtime and the application through the OMPT API is shown in Figure 23. In the initialization 
phase (see Figure 23.a), the tool needs to correct the time latency between the clocks on the host and 
the target accelerator (using ompt_target_get_time and ompt_target_translate_time), and also assign 
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synthetic thread identifiers. Those thread identifiers are going to represent the different logical com-
ponents of each accelerator for each host, as explained above. 

Then, the tool needs to provide two callbacks to the runtime for the tracing buffer management during 
the program's execution, one will handle memory allocation requests, and the other will process a 
buffer of events when it is full. The first callback allocates a buffer for a target accelerator within the 
host address space, which will be returned to the runtime on demand to have it filled with the moni-
tored tracing events (see Figure 23.b). The second callback receives a full buffer from the runtime that 
contains the traced events of a target accelerator, and the tool is the one responsible for storing the da-
ta into disk. As mentioned earlier, the runtime records the traced events into OMPT Record Types, 
which the tool can parse with provided iterators (ompt_target_buffer_get_record_ompt, etc.) to serial-
ize the data into the final trace. The events that we are currently monitoring are 
ompt_event_task_begin, ompt_event_task_switch and ompt_event_task_end, which enables us to 
keep track of the tasks offloaded to the accelerators and their duration. 

More precisely, the ompt_event_task_begin event notifies about the current active task in the acceler-
ator, and provides information about the task identifier and the outlined function. The event 
ompt_event_task_switch notifies when a task is scheduled in and out of the device, which can be used 
to mark in the trace the real execution life span of the task in the accelerator. In order to record the ac-
tual time-stamps of these events, it is necessary to synchronize the target device's clock with the 
host's, applying the previously calculated time corrections. In turn, the ompt_event_task_end event 
indicates the finalization of the given task, but some runtimes may omit this event and only emit a last 
ompt_event_task_switch marking the task as scheduled out. 

Lastly, the tool notifies the runtime to start monitoring the host and the accelerators activity 
(ompt_target_set_trace_ompt and ompt_target_start_trace). Once the execution finishes, the tool still 
needs to store the remaining events in the tracing buffers that may have not been flushed yet. To this 
end, the tool calls to ompt_target_stop_trace for each accelerator device, which implicitly requests the 
runtime to flush the associated allocated buffer for the given accelerator through the corresponding 
callback provided by the tool. 

3.1.4 Hardware Support 
To support the hardware instrumentation, a timer has been implemented. Therefore, both IP accelera-
tors and the OmpSs application, running in the ARM, can easily and transparently access it. This can 
have been basically done using a BRAM memory that can be accessible using through a BRAM con-
troller. The BRAM controller is mapped to a physical memory accessible from anywhere through the 
PS system and the IP accelerators. 
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Figure 24 shows a picture of the Vivado hardware design. This hardware design shows an IP accelera-
tor with the input and output Stream, ant the data port for the profiling support. 

Figure 24. Hardware design of an IP accelerator with hardware instrumentation support. 

 

3.2  OmpSs@Cluster Instrumentation Support  
Deliverable D5.2 provides a comprehensive description on the design choices that were done in to de-
velop a GASNet conduit, which directly supports the AXIOM user Libraries and the AXIOM kernel 
driver running on top of the AXIOM NIC registers. In order to provide a comprehensive trace infra-
structure, that is able to trace all actions performed in the GASNet conduit, we added support for the 
Extrae logging facilities directly inside the implementation of the GASNet conduit. In particular, we 
added the following trace points: 

• IOCTL execution. Added mainly because the current interaction of the AXIOM user librar-
ies with the kernel driver uses IOCTL calls. In this way, it is possible to trace the main inter-
actions between the application and the message buffer implementation. The instrumentation 
method used in this case is the Extrae support for wrapping existing functions. 

• All the AXIOM API (send/receive of raw messages, RDMA write/read, send/receive long 
messages). The instrumentation method used in this case is the insertion of explicit Extrae 
trace points inside the AXIOM User library. 

• The main high-level functions of the AXIOM allocator (see D5.2). The instrumentation 
method used in this case is the insertion of explicit Extrae trace points inside the AXIOM Us-
er library. 
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To provide a seamless integration with the instrumented libraries of the existing Nanos++ runtime, the 
compilation of the AXIOM User Library is now implemented in a way to produce two separate librar-
ies. The first one, without instrumentation mechanisms, and the second one, with Extrae instrumenta-
tion, which is automatically copied in the $PREFIX/lib/instrumentation directory in order to be auto-
matically used by the system when Extrae is enabled. 

The Extrae traces are then produced after the execution on each node of the AXIOM cluster (currently 
emulated on QEMU machines, see Section 4.2); a script is then responsible for collecting and merging 
the traces in a single trace, that is later visualized with Paraver tool. 

 

4 Results 
This Section shows the evaluation of the automatic generated OmpSs@FPGA, using the instrumenta-
tion of the hardware acceleration of those accelerated applications in a Zynq-7000 SoC. In addition, 
we present some preliminary results of OmpSs@Cluster on a QEMU-emulated AXIOM cluster, using 
the GASNet conduit, implemented by Evidence over the API of the interconnection network imple-
mented by FORTH. This way, we have been able to advance on the porting of the software infrastruc-
ture to run on two (emulated) Zynq Ultrascale+ boards, which is ready to be ported to the actual 
hardware environment, when available. 

4.1 OmpSs@FPGA Instrumentation Analysis 
In this section, we present different execution scenarios varying the number and type of accelerators, 
with the objective of showing the significant insight that trace-based performance analysis of the ac-
celerators activity provides to the user. 

Results in the next subsection have been obtained on a Zynq SoC 702 board. This platform integrates 
a SMP dual core ARM Cortex A9 processor running at 666 MHz plus a programmable logic (FPGA) 
region based on Xilinx’s Artix 7 FPGA [12]. The OmpSs ecosystem for FPGA/SMP heterogeneous 
execution used to obtain these results is based on the Mercurium compiler 1.99.9, the Nanos++ 
runtime 0.10a, and Extrae tracing framework 3.3.0. In order to generate the FPGA bitstream that im-
plements the accelerator/s logic for the OmpSs task/s with target device fpga, Vivado and Vivado 
HLS, Xilinx’s proprietary tools, both version 2015.4, have been used. In the case of floating-point ap-
plications, Vivado HLS synthesizes code compliant with the IEEE-754 standard. All the applications 
and libraries have been cross-compiled using arm-linux-gnueabihf-gcc 4.8.4 (Ubuntu/Linaro 4.8.4-
2ubuntu1 14.04.1).  

We show trace execution results for two tiled applications: matrix multiply and Cholesky decomposi-
tion, using the following fpga task granularities for the tiles (blocks): 64x64 -block and 32x32 single 
precision floating point matrix multiply, and 64x64 -block double-precision floating point Cholesky 
decomposition. Matrix multiply (Figure 25) is a well-known and common scientific computation ker-
nel that provides a reasonably simple scenario to illustrate how our framework is able to display the 
activity of the accelerated system. 
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Figure 25. Matrix multiplication annotated with OmpSs directives. Matmul is the blocking matrix multiplication function, 
and MxM performs the matrix multiplication of a block. 

Cholesky decomposition (Figure 26.a) is a more complex scientific computation kernel due to the task 
data dependencies, as it can be seen in Figure 26.b. In this case, two out of four of the kernels are an-
notated to be able to run in the FPGA (using the directive target device (fpga). The other two have not 
been considered to be mapped to the FPGA by the programmer. This approach has been selected with 
the purpose of showing the potential of the proposed tracing although is not the configuration that 
achieves the best performance [13]. 
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Figure 26. Cholesky decomposition. 

. 

4.1.1 Cholesky Application Analysis 
In the case of the tiled Cholesky decomposition, we have evaluated one of the possible smp /fpga tar-
get device assignments of the application’s task kernels. 

In order to simplify the example, the problem size is fixed (256x256), the task granularity is fixed 
(64x64 blocks), and the combination of software/hardware partition analyzed is one hardware acceler-
ator for each dgemm and dsyrk tasks, and dpotrf and dtrsm tasks running in the SMP. Figure 27 
shows the trace execution of the Cholesky application using this software/hardware partition. The 
begin/end of the smp tasks (in Master), the DMA transfers, and the fpga tasks, are marked with green 
flags to help distinguish consecutive instances of the smp tasks. This trace shows how the proposed 
OMPT-based tracing combines the accelerator and SMP partial traces into one single trace that helps 
to gain overall understanding of the whole application. While dpotrf and dtrsm tasks run in the Master 
thread (first row, light and dark green colors respectively), dgemm and dsyrk tasks (blue and red color 
respectively) are offloaded to the accelerator devices. We can observe that the task execution order 
matches the task data dependency graph in Figure 26.b, where the tasks are represented by the same 
colors. 
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Figure 27. Cholesky execution using 2 fpga accelerators for dgemm and dsyrk. Dpotrf and dtrsm run in the SMP. 

Figure 27 also provides significant insight on the task acceleration in the FPGA. For instance, the first 
dsyrk task presents an unexpected input/output data transfer duration that is significantly higher than 
the rest of dsyrk tasks (see Figure 28). Figure 28.a shows the very first DMA memory transfer 
(DMA_in) in the application, which costs twice as much as any other DMA_in transfer of the same 
kernel (see Figure 28.b). This likely results from the DMA driver initialization during the very first 
fpga task acceleration.  

 

Figure 28. Comparison of two different runtime configurations for hardware acceleration. 

Furthermore, Figure 27 shows that the dtrsm tasks (dark green phases in Master preceding the accel-
erated kernels) are in the critical execution path of the current application implementation. The dtrsm 
tasks have a relatively low performance compared to the FPGA acceleration, and only few dgemm 
and dsyrk instances can be ready to be executed after a dtrsm task execution. In addition, the dgemm 
and dsyrk tasks are executed much faster, leaving the hardware accelerators idle for a long time (e.g. 
the dtrsm task latency). With this information, the programmer may decide to accelerate the dtrsm 
tasks in hardware. Another possible solution is to execute the slow SMP tasks (dpotrf and dtrsm) in 
more than one core of the SMP, so that two or more dtrsm tasks can be executed in parallel. However, 
this would incur in over-subscription with the current environment: The Zynq system (with two Cor-
tex-A9 SMP) and the current implementation of OmpSs, which uses one internal thread to submit the 
hardware computations. 

Either way, once the programmer solves this application design issue, the dgemm and dsyrk tasks may 
turn to be in the critical execution path. The execution pattern of dgemm and dsyrk tasks is always the 

dtrsm is the main critical execution 
path 

resulting in long idles in the accelera-
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same for each iteration of the algorithm. All the dgemm tasks are executed first, and then the dsyrk 
task execution follows, although there are no task dependencies between them. This behavior is at-
tributed to the runtime scheduling policy, which results in a low degree of overlapping between these 
two kernels, as only the last dgemm task is able to overlap execution with the dsyrk task of the same 
iteration, as shown in Figure 29. A deeper analysis shows that the hardware computations of both ker-
nels cannot concur more than 12% of the execution time. Therefore, improving the application design 
issue that was initially observed, will likely uncover this second issue regarding the runtime schedul-
ing policy. 

 

Figure 29. Execution overlap of dgemm and dsyrk tasks. Dpotrf and dtrsm tasks run in SMP. 

A possible solution to reduce the potential scheduling policy impact is to enable one internal runtime 
thread per accelerator device, so that each internal runtime thread will take care of one type of accel-
erator. This solution would decouple the execution order of ready tasks in their corresponding hard-
ware accelerators. However, this approach of using one internal runtime thread per accelerator is not 
the ideal solution, because that may entail over-subscription in systems with a small number of cores. 
Therefore, other solutions should be explored to parallelize task offloading using a single internal 
runtime thread. The current runtime implementation has only one internal runtime thread for all the 
hardware accelerators. 

4.1.2 Matrix Multiply Analysis 
Tiled matrix multiplication is analyzed varying the number of accelerators, the level of optimization 
of those hardware accelerators, and the number of MxM instances in the code (unroll degree). The 
problem size is a 256x256 matrix, divided into smaller blocks of 64x64 tiles, which are automatically 
offloaded to the accelerators, programmed in the FPGA, by the Nanos++ runtime of OmpSs. In addi-
tion, we present some results for 32x32 tiled matrix multiplication, which show some special charac-
teristics due to the fine-grain granularity of the tasks. 

Figure 30 (top) shows an execution trace of the application when using one single fpga accelerator 
device. Rows represent the different computational and communication components of the system. 
From top to bottom: the master thread (Master), the kernel computations (FPGA acc MxM.1), and the 
DMA memory transfer copies from main memory to the accelerator (DMA in MxM.1) and from the 
accelerator to main memory (DMA out MxM.1). We can observe that (1) all tasks are offloaded to the 
fpga accelerator device since there is not any task execution in the Master thread (this corresponds to 
the MxM target device specification), and (2) there are two MxM different tasks. In particular, the ac-
celerator device is only one (FPGA acc MxM.1), but two different colors appear because two different 
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MxM instances in the OmpSs program are called (the innermost loop of matrix multiplication func-
tion in Figure 25 has been unrolled by two). 

 

Figure 30. Execution trace of a 256x256 MxM using unrolling 2 (two colors) and one FPGA accelerator of 64x64 size 

Figure 30 (bottom) shows a detailed view of the computation of 6 tiles (3 for each multiplication), 
where the reader can clearly see that they execute alternately. We can observe a clear dependence 
chain between computations and memory transfers. First, the data has to be copied from the main 
memory to the accelerator, which is shown in the DMA in row. As soon as the data has been copied, 
the computation of the task can start, displayed in the FPGA acc. Once the computation of the kernel 
has finished, the data is copied back to the main memory, as shown in the DMA out. We can observe 
that the next iteration does not start until the previous one has finished copying the data back to the 
host. Looking at the depicted execution pattern, we can also infer a potential improvement for the 
runtime, which could consider overlapping the input/output memory transfers and hardware computa-
tion between iterations since the DMA channels are independent. 

Table 1 shows the average execution time of each of the stages of the task execution in an accelerator: 
input DMA transfer (DMA in), acceleration execution (FPGA acc) and output DMA transfer (DMA 
out). These measurements have been obtained using the Paraver profiling feature and validate that the 
MxM computation latency matches the High Level Synthesis tool estimation, and the DMA transfer 
times are very similar to the expected times. 
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 Task #1 (Red) Task#2 (Blue) 

FPGA acc MxM.1 334 us 337 us 

DMA_in MxM.1 260 us 246 us 

DMA_out MxM.1  82 us 82 us 

Total 674 us 665 us 

Table 1: Average time per computation and transfer for a 64x64 MxM. 

On the one hand, the input/output DMA transfer time ratio is close to 3, and corresponds to the three 
input matrices and one output matrix needed by the hardware accelerator. However, this ratio may 
change for other task granularities. For instance, we have analyzed the trace execution for 32x32 
block size (see Table 2) and the input/output DMA transfer execution times are very similar to the 
64x64 block size, being larger than the expected for a finer granularity. In general, the DMA transfer 
performance may vary due to two main reasons: (1) the different DMA input/output bandwidth [13] 
and (2) the different waiting time for the corresponding DMA submit (i.e. the runtime programming 
the DMA), that can be significant for fine-grain task granularities. Note that a DMA transfer is not 
started until the corresponding submit is done. For instance, the task granularity in the 64x64 case is 
large enough to allow the runtime perform the DMA submit before the execution of the MxM task 
concludes. Therefore, the DMA out transfer can start immediately after the hardware computation, 
and the listed time accounts for actual transfer time. On the contrary, in the finer-granularity case of 
32x32 MxM, with 8 less computation latency, the hardware computation is completed so fast that the 
runtime does not arrive on time to issue the DMA submit beforehand. Therefore, the DMA out trans-
fer time of the 32x32 case also includes the waiting time for the DMA submit to arrive. All the above 
explains why the 32x32 MxM DMA out transfer time is higher than expected and similar to the 64x64 
case.   

On the other hand, the hardware computation and the input DMA transfer times are similar for the 
64x64 MxM, but they may vary depending on the task granularity, the computation complexity and 
the hardware optimizations applied, which may be more or less aggressive depending on the FPGA 
resources availability. Thus, the execution time for two different approaches of the same 64x64 hard-
ware accelerator may vary from 0.17ms to 26.34ms, having the same input and output memory trans-
fer times. For an optimized version of a 32x32 tiled matrix multiplication, the input DMA trans-
fer/FPGA execution time ratio goes up to 5 (Table 2), being the hardware computation time signifi-
cantly lower than the data transfer times. 

 

 

 

 

 



Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era 
Grant Agreement Number: 645496 
Call: ICT-01-2014: Smart Cyber-Physical Systems 
 

Deliverable number: D4.2 
Deliverable name: Axiom Code Generation and Instrumentation 
File name: AXIOM_D42-v10.docx  Page 42 of 53 

 Task #1 (Red) Task#2 (Blue) 

FPGA acc MxM.1 47 us 45 us 

DMA_in MxM.1 229 us 256 us 

DMA_out MxM.1  81 us 82 us 

Total 357 us 383 us 

Table 2: Average time per computation and transfer for a 32x32 MxM 

Figure 31. MxM execution trace using two MxM hardware accelerators and two(top) and four(bottom) MxM task instances 

Figure 31 shows detailed views of the execution of the same problem using two accelerators and two 
and four matrix multiplication (MxM) instances respectively. In these cases, each MxM instance may 
be assigned to any of the two accelerator devices. It can be seen that tasks overlap in time, increasing 
the occupation of resources and the parallelism.  Table 3 shows the execution time percentage of over-
lapping DMA memory transfers and hardware computations between the two accelerators. As the 
reader can see, there are overlaps between input and output DMA transfers, and between input DMA 
transfers and hardware computations. However, both input and output DMA channels are never active 
simultaneously due to the runtime’s task scheduling pattern. Likewise, the hardware computations 
from both accelerators neither overlap due to their small execution times. For slower or more time-
consuming accelerators, the hardware computations can overlap in time, as we can observe in Figure 
32. This view presents a detailed zoom of the execution trace of a matrix multiplication, using two ac-
celerators and four MxM instances, where the MxM tile is computed by a no optimized accelerator. In 
this case, the execution overlap between FPGA accelerators is above 90%. 
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 DMA_in MxM.1 DMA_out MxM.1 FPGA acc MxM.1 

DMA_in MxM.2 0% 21.4% 17.0% 

DMA_out MxM.2 20.1% 0% 0% 

FPGA acc MxM.2 11.2% 0% 0% 

Table 3: Percentage of time overlap between DMA transfers and MxM FPGA accelerator computation 

Figure 32. Execution of 4 tasks using 2 time-consuming accelerators and 4 task instances 

Therefore, tracing the accelerator activity provides insight about DMA memory transfers and hard-
ware computation overlap and their real latency information, which is not provided by any High Level 
Synthesis tool to the best of our knowledge. This analysis can help to improve the runtime memory 
management and scheduling policy. 

4.1.3 OmpSs@FPGA Runtime Improvement Analysis 
As commented, one of the reasons that makes the DMA transfer performance vary is the waiting time 
for each DMA submits of the DMA transfers to be done in a FPGA task execution. This difference is 
mainly due to the FPGA task communication model used in the current version of OmpSs@FPGA. In 
this model, one different DMA submit is required per task argument copy, in or out, before the corre-
sponding DMA transfer starts. In order to reduce this difference, one possible improvement is to make 
the OmpSs runtime provide the necessary information of the copies (in and out’s) to the accelerator, 
in just one DMA submit. With this unique submit, the FPGA accelerator can start all the necessary 
DMA copies without having to wait for each DMA submits. 

A partial implementation of this new FPGA task communication model has been implemented in the 
current OmpSs@FPGA, with promising results for the full implementation at the end of the project. 
Figure 33 (a) and Figure 33 (b) are time scaled and show several FPGA task executions (64×64 tiles), 
with the same computation time (FPGA acc time) for two different versions of the OmpSs runtime 
where: (1) one DMA submit per task argument copy is necessary (top), and (2) just one DMA submit 
for all the task argument copies of a task execution is necessary (bottom). As it can be seen, mean-
while five full tasks can be run in the original version and six full tasks can be run in the improved 
runtime. This improvement is due to shortening the waiting time in the DMA transfers, as shown for 
the first task execution of the Figures. The DMA in of the first task in the original version is much 
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longer than the first DMA in of the first task of the improved version. Indeed, it also seems that a 
larger number of DMA submits, with the corresponding synchronization overheads, in the original 
runtime impacts the average DMA transfer time (DMA in and DMA out’s); doubling the DMA in 
transfer time of the improved version. 

More improvements are expected once the full implementation of the new task communication model 
is finished. Figure 33 (b) shows some idle time between the DMA out and DMA in of consecutive 
task executions. That is due to there are some removable runtime overheads of the previous commu-
nication model that are still in this partial implementation that provokes that idle time between two 
consecutive task executions. 

Figure 33. Original (top) and improved (bottom) FPGA task communication model. Only one helper thread is used. 

 

4.2 OmpSs@Cluster on AXIOM Cluster (emulated w/ QEMU) 
The physical Zynq Ultrascale+ based platform developed in the AXIOM project will be only available 
during the 3rd year of the project. During the 2nd year, thanks to the initial availability of a QEMU de-
vice tree directly from Xilinx, we have been able to emulate a complete AXIOM cluster, including the 
cluster setup (wired connections of the various boards), and the AXIOM NIC FPGA (we emulated the 
functionality of the AXIOM NIC register set following the specification agreed with FORTH). On top 
of the emulated environment, we have been able to run the complete OmpSs@Cluster stack, including 
the Extrae instrumentation presented in the previous Section. 
 
Figure 34 shows the architecture implemented to emulate a cluster based on Xilinx Ultrascale+ ma-
chines representing an AXIOM cluster. The main architectural information is the following: 
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• AXIOM Switch.  
The AXIOM Switch is a separate host process that emulates the connections between the 
boards. It receives the packets to be sent from the various QEMU instances and it delivers the 
packets directly to the recipient following the routing tables (there is not an emulation of the 
routing of the packet through the various nodes). The AXIOM switch process is able to print 
diagnostic messages about the messages being delivered. It can be started with a regular 
(ring/2D mesh) topology, or with a custom topology specified in a text file. 
 

• QEMU Socket backend. 
The QEMU implementation takes advantage of a Socket backend, which is a standard com-
munication mechanism available in QEMU. At startup, each QEMU instance is connected us-
ing the socket backend to the AXIOM Switch process in order to simulate the connection of a 
board to the other boards. 
 

• QEMU Frontend. 
The QEMU Frontend implements the AXIOM NIC Datasheet registers, thus emulating the 
real registers that will be available once the AXIOM board integrated with the AXIOM NIC 
IP will be available. 
 

• Virtual machine. 
Each QEMU instance is programmed with a proper Device Tree Source (DTS) instantiating 
an amount of memory as the real AXIOM board, plus the AXIOM NIC Frontend. In this way, 
it is possible to run a Linux distribution on top of the virtual machine. Each Virtual machine 
will emulate a single board. 
 

• Linux distribution. 
In order to emulate a set of Linux instances on a normal PC, we limited the Linux distribution 
to a minimal buildroot installation, which will include not only the basic buildroot but also all 
the precompiled binaries and dynamic libraries needed to start an OmpSs@Cluster applica-
tion. 
 

• Cross-compilation of OmpSs@Cluster. 
In order to be able to prepare the buildroot image, we prepared on the host a version of Om-
pSs, which is able to be cross-compiled for the ARM64 target. 
 

• Startup scripts. 
We wrote a set of startup scripts, which are able to automatically start a number of QEMU 
emulator all connected to an AXIOM switch process. The AXIOM switch process is started 
with a customizable network layout. The scripts also take care of merging the Extrae data 
produced by the execution of the application. 
 

• VirtualBox Virtual Machine 
To ease the deployment and distribution of the QEMU configuration, all the above has been 
packaged inside a VirtualBox x64 Virtual machine. The virtual machine has been released as 
part of the public content of deliverable D5.3. 
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Figure 34. The QEMU emulation infrastructure that is able to emulate an AXIOM cluster based on the Zynq Ultrascale+. 

 

By using the virtual machine, it is then possible to compile and execute OmpSs@Cluster applications. 
Figure 35 and Figure 36 show the Extrae trace results of the execution of a Matrix Multiply and of an 
Nbody example, respectively. The matrix multiplication experiment is done with a matrix size of 
300x300 floating-point values, and a block size of 25x25 elements. The N-body experiment uses a 
problem with 256 particles, a block size of 128 particles, and it computes for 5 timesteps. Both exper-
iments are done with 2 QEMU nodes, and running with 3 worker threads per node, and an additional 
communications thread in each node. 

As expected, the traces are collected correctly, but their timings are neither synchronized nor reliable 
(this is normal in a QEMU emulation framework, as QEMU does not provide an accurate guest tim-
ing: it can only be useful to us for the software development but not for the performance evaluation). 

However, despite the lack of timing reliability, the setup shows an initial promising integration of the 
complete toolset. Additional analysis will be performed during the third year once the AXIOM board 
will be delivered. 

In each figure, the set of traces show the actual execution events that happen in each thread (see labels 
at the right-hand side, THREAD x.y.x), across time (X axis). The communication thread is number 2 
in each node. The different views, from top to bottom, represent: 

- Tasks and dependences: the execution of the tasks across time, linked with yellow lines repre-
senting the task dependences. 

- Tasks and control dependences: the same task view with the creation links. 
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- Task number: it shows a color gradient based on the task identifier assigned by Nanos++. 
Tasks with low Id numbers are shown as light green, and tasks with a high Id number are 
shown in dark blue. 

- AXIOM NIC API: it shows the calls being issued to the AXIOM NIC. Those calls are issued 
from the GASNet conduit implemented in T5.3, and triggered by the data movements gener-
ated from OmpSs@cluster. There are four main functions that get represented in these views: 

o Axiom_recv_*_avail(), in gray color, indicating that the conduit is checking whether 
there are messages available, of a specific type. 

o Axiom_send_long(), in light green color, to send a long message to a remote node. 
o Axiom_send_raw(), in yellow color, to send a raw message to a remote node. 
o Axiom_rdma_write(), in blue color, indicating a data transfer between the NIC 

memory and the host memory.  
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Figure 35. PARAVER screenshot of an execution of a Matrix Multiplication on top of QEMU emulation. 
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Figure 36. PARAVER screenshot of an execution of an N-Body example on top of QEMU emulation. 
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5 Confirmation of DoA objectives 
Describe how the deliverables conform to the DoA stated objectives, using the sample table if appro-
priate. 

PLANNED DELIVERED 
DELIVERABLE:  

• Documentation for the prototype com-
piler and first comparative research re-
sults. AXIOM code generation and in-
strumentation  

The topics are described in this deliverable. 
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6 Conclusions 
In this AXIOM deliverable, we have presented: (1) the programming model extensions proposed for 
programming the AXIOM boards with OmpSs; (2) the design of the support for the FPGA devices; 
(3) the automatic hardware generation framework; (4) the design exploration of the possible support 
of XSMLL from OmpSs annotated applications; and (5) the OmpSs@Cluster results for a QEMU en-
vironment emulating the Xilinx Zynq Ultrascale++ boards. The latter includes the GASNet conduit 
over the emulated AXIOM NIC. 

Programming the AXIOM environment is currently much easier for the programmer with the auto-
matic hardware generation, by using annotations in the OmpSs applications. The compilation process 
is almost transparent to the programmers so they can focus in the performance of the application. The 
programmers will program its task decomposition with the input/output/inout dependences with some 
of the task with target device FPGA. The compiler will automatically generate all the calls to the 
Nanos++ runtime in the SMP code to deal with the tasks, and the Nanos++ runtime will use the DMA 
library design presented in deliverable D4.1, to take care of data transfers between the host memory 
and the FPGA devices. Indeed, the programmers may decide to instrument to do a deeper analysis of 
the code, even inside the FPGA. The current compiler/runtime infrastructure transparently allows the 
programmers to obtain a Paraver trace and do this analysis. In this deliverable we have presented 
some of those possible analysis that has helped to have future research lines to tune the runtime and 
the applications. 

Supporting distributed environments will be based on the communication layer (AXIOM-link) pro-
vided by FORTH to exchange data between AXIOM boards. We are also considering the use of 
common tools, like MPI or GASNet. In this deliverable we have presented OmpSs@Cluster on an 
AXIOM cluster, emulated with QEMU, using the GASNet conduit over the API of the future high in-
terconnection link. 

The next steps that will be taken in the project, related to this deliverable will be to fully implement a 
new mechanism of DMA transfers to improve the overall task executions, and develop mechanism to 
reduce the overall amount of DMA transfers. Also, having a mechanism to automatically generate 
hardware can help to evaluate the best software-hardware codesign to accelerate an OmpSs applica-
tion. We will also evaluate the possibility to reuse some of the components implementing the commu-
nication layer, specially the DMA devices, to be used to transfer data to the accelerators in the FPGA. 
This way, we can save some of the FPGA resources and fit larger accelerators on it. 

Other publications of the project [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] are report-
ed in the reference list. 

 

  



Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era 
Grant Agreement Number: 645496 
Call: ICT-01-2014: Smart Cyber-Physical Systems 
 

Deliverable number: D4.2 
Deliverable name: Axiom Code Generation and Instrumentation 
File name: AXIOM_D42-v10.docx  Page 52 of 53 

References 
1. Dan Bonachea; GASNet Specification, v1.1. Report No. USB/CSD-02-1207. CS Division, 

EECS Department, University of California, Berkeley; October 2002; 
http://gasnet.lbl.gov/CSD-02-1207.pdf 

2. Javier Bueno, Xavier Martorell, Rosa M. Badia, Eduard Ayguadé, Jesús Labarta; Implement-
ing OmpSs support for regions of data in architectures with multiple address spaces. ICS 
2013: 359-368 (2013). 

3. Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell, Xavier 
Martorell, Judit Planas; OmpSs: a Proposal for Programming Heterogeneous Multi-Core Ar-
chitectures. Parallel Processing Letters 21(2): 173-193 (2011). 

4. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Version 3.0; 
September 2012; http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf 

5. DMA driver for AXIOM: https://git.axiom-project.eu/?p=axiom-dma 

6. XSMLL API for AXIOM: https://git.axiom-project.eu/?p=XSMLL 

7. OmpSs website: http://pm.bsc.es/ompss 

8. COTSon website: http://cotson.sourceforge.net/ 

9. Argollo, E., Falcón, A., Faraboschi, P., Monchiero, M., and Ortega, D. 2009. COTSon: infra-
structure for full system simulation. SIGOPS Oper. Syst. Rev. 43, 1 (Jan. 2009), 52-61 

10. Xilinx, Inc. Vivado Design Suite – HLx Edition, 
http://www.xilinx.com/products/design-tools/vivado.html 

11. Germán Llort, Antonio Filgueras, Daniel Jiménez-González, Harald Servat, Xavier Teruel, 
Estanislao Mercadal, Carlos Álvarez, Judit Giménez, Xavier Martorell, Eduard Ayguadé, Je-
sús Labarta: “The Secrets of the Accelerators Unveiled: Tracing Heterogeneous Executions 
Through OMPT”. IWOMP 2016: 217-236 

12. Zynq-7000 All Programmable SoC Overview. 
http://www.xilinx.com/support/documentation/data sheets/ds190-Zynq-7000-Overview.pdf. 

13. Daniel Jiménez-González, Carlos Álvarez, Antonio Filgueras, Xavier Martorell, Jan Langer, 
Juanjo Noguera, and Kees A. Vissers. “Coarse-grain performance estimator for heterogeneous 
parallel computing architectures like Zynq All-programmable SoC”. CoRR, abs/1508.06830, 
2015. 

14. R. Giorgi, “Transactional memory on a dataflow architecture for accelerating Haskell,” 
WSEAS Trans. Computers, vol. 14, pp. 794–805, 2015. 

15. R. Giorgi and A. Scionti, “A scalable thread scheduling co-processor based on data-flow 
principles,” ELSEVIER Future Generation Computer Systems, vol. 53, pp. 100–108, July 
2015. 



Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era 
Grant Agreement Number: 645496 
Call: ICT-01-2014: Smart Cyber-Physical Systems 
 

Deliverable number: D4.2 
Deliverable name: Axiom Code Generation and Instrumentation 
File name: AXIOM_D42-v10.docx  Page 53 of 53 

16. D. Theodoropoulos et al., “The AXIOM project (agile, extensible, fast I/O module),” in IEEE 
Proc. 15th Int.l Conf. on Embedded Computer Systems: Architecture, MOdeling and Simula-
tion, July 2015. 

17. R. Giorgi, "Scalable Embedded Systems: Towards the Convergence of High-Performance and 
Em-bedded Computing", Proc. 13th IEEE/IFIP Int.l Conf. on Embedded and Ubiquitous 
Computing (EUC 2015), Oct. 2015. 

18. R. Giorgi, "Exploring Dataflow-based Thread Level Parallelism in Cyber-physical Systems", 
Proc. ACM Int.l Conf. on Computing Frontiers, New York, NY, USA, 2016, pp. 6. 

19. A. Rizzo, G. Burresi, F. Montefoschi, M. Caporali, R. Giorgi, "Making IoT with UDOO", In-
terac-tion Design and Architecture(s), vol. 1, no. 30, Dec. 2016, pp. 95-112. 

20. L. Verdoscia, R. Giorgi, "A Data-Flow Soft-Core Processor for Accelerating Scientific Calcu-
lation on FPGAs", Mathematical Problems in Engineering, vol. 2016, no. 1, Apr. 2016, pp. 1-
21. 

21. S. Mazumdar, E. Ayguade, N. Bettin, S. Bueno J. and Ermini, A. Filgueras, D. Jimenez-
Gonzalez, C. Martinez, X. Martorell, F. Montefoschi, D. Oro, D. Pnevmatikatos, A. Rizzo, D. 
Theodoropou-los, R. Giorgi, "AXIOM: A Hardware-Software Platform for Cyber Physical 
Systems", 2016 Eu-romicro Conf. on Digital System Design (DSD), Aug 2016, pp. 539-546. 

22. R. Giorgi, N. Bettin, P. Gai, X. Martorell, A. Rizzo, "AXIOM: A Flexible Platform for the 
Smart Home", Springer Int.l Publishing, Cham, 2016, pp. 57-74. 

23. P. Burgio, C. Alvarez, E. Ayguade, A. Filgueras, D. Jimenez-Gonzalez, X. Martorell, N. Na-
varro, R. Giorgi, "Simulating next-generation cyber-physical computing platforms", Ada User 
Journal, vol. 37, no. 1, Mar. 2016, pp. 59-63. 

24. Jimenez-Gonzalez, Daniel; Alvarez-Martinez, Carlos; Filgueras, Antonio; Martorell, Xavier; 
Langer, Jan; Noguera, Juanjo; Vissers, Kees, “Coarse-Grain Performance Estimator for Het-
erogeneous Parallel Computing Architectures like Zynq All-Programmable SoC” (Journal Ar-
ticle) Second International Workshop on FPGAs for Software Programmers FSP 2015, CoRR 
, 2015. 

25. R. Giorgi, S. Mazumdar, S. Viola, P. Gai, S. Garzarella, B. Morelli, D. Pnevmatikatos Dio-
nisios and Theodoropoulos, C. Alvarez, E. Ayguade, J. Bueno, D. Filgueras Antonio and 
Jimenez-Gonzalez, X. Martorell, "Modeling Multi-Board Communication in the AXIOM 
Cyber-Physical System", Ada User Journal, vol. 37, no. 4, December 2016, pp. 228-235. 

 


