
Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 1 of 54

H2020 FRAMEWORK PROGRAMME
ICT-01-2014: Smart Cyber-Physical Systems

PROJECT NUMBER: 645496

Agile, eXtensible, fast I/O Module for the cyber-physical era

D3.2 – Report on Proof of Concepts

Due date of deliverable: 31st January 2017
Actual Submission: 7th February 2017 (agreed extended date)

Start date of the project: 1st February 2015 Duration: 36 months

Lead contractor for the deliverable: UNISI

Revision: See file name in document footer.
Project co-founded by the European Commission

within the HORIZON FRAMEWORK PROGRAMME (2020)
Dissemination Level: PU
PU Public
PP Restricted to other programs participant (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Change Control
Version# Date Author Organization Change History
0.1 01.01.2017 Antonio Rizzo UNISI Initial version
0.2 03.01.2017 David Oro HERTA Added SVS section
0.3 05.01.2017 Nicola Bettin VIMAR Added SHL section
1.0 31.01.2017 Antonio Rizzo UNISI Improved sections 1-8
1.5 02.02.2017 Xavier Martorell BSC Revisions
1.5 02.02.2017 Stefano Garzarella EVI Revisions
2.0 03.02.2017 Antonio Rizzo UNISI Final version

Release Approval
Name Role Date
Antonio Rizzo WP Leader 03.02.2017
Roberto Giorgi Project Coordinator for formal deliverable 04.02.2017

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 2 of 54

The following list of authors will be updated to reflect the list of contributors to the document.

Antonio Rizzo, Francesco Montefoschi, Sara Ermini
Department of Social, Political and Cognitive Sciences

University of Siena – UNISI – AXIOM

David Oro
RD department

Herta Security – HERTA – AXIOM

Nicola Bettin
RD department

VIMAR S.p.A. – VIMAR – AXIOM

© 2015-2018 AXIOM Consortium, All Rights Reserved.
Document marked as PU (Public) is published in Italy, for the AXIOM Consortium, on the www.AXIOM-pro-
ject.eu web site and can be distributed to the Public.
All other trademarks and copyrights are the property of their respective owners. The list of author does not imply
any claim of ownership on the Intellectual Properties described in this document.
The authors and the publishers make no expressed or implied warranty of any kind and assume no responsibilities
for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information contained in this document.
This document is furnished under the terms of the AXIOM License Agreement (the "License") and may only be
used or copied in accordance with the terms of the License. The information in this document is a work in progress,
jointly developed by the members of AXIOM Consortium ("AXIOM") and is provided for informational use only.
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks and/or trade
secrets owned by or licensed to AXIOM Partners. The partners reserve all rights with respect to such technology
and related materials. Any use of the protected technology and related material beyond the terms of the License
without the prior written consent of AXIOM is prohibited. This document contains material that is confidential to
AXIOM and its members and licensors. Until publication, the user should assume that all materials contained
and/or referenced in this document are confidential and proprietary unless otherwise indicated or apparent from
the nature of such materials (for example, references to publicly available forms or documents).
Disclosure or use of this document or any material contained herein, other than as expressly permitted, is prohib-
ited without the prior written consent of AXIOM or such other party that may grant permission to use its propri-
etary material. The trademarks, logos, and service marks displayed in this document are the registered and unreg-
istered trademarks of AXIOM, its members and its licensors. The copyright and trademarks owned by AXIOM,
whether registered or unregistered, may not be used in connection with any product or service that is not owned,
approved or distributed by AXIOM, and may not be used in any manner that is likely to cause customer confusion
or that disparages AXIOM. Nothing contained in this document should be construed as granting by implication,
estoppel, or otherwise, any license or right to use any copyright without the express written consent of AXIOM,
its licensors or a third party owner of any such trademark.
Printed in Siena, Italy, Europe.
Part number: Please refer to the File name in the document footer.

EXCEPT AS OTHERWISE EXPRESSLY PROVIDED, THE AXIOM SPECIFICATION IS PROVIDED BY AXIOM TO
MEMBERS "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING
BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
AXIOM SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL
DAMAGES OF ANY KIND OR NATURE WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ANY DAMAGES
ARISING FROM LOSS OF USE OR LOST BUSINESS, REVENUE, PROFITS, DATA OR GOODWILL) ARISING IN
CONNECTION WITH ANY INFRINGEMENT CLAIMS BY THIRD PARTIES OR THE SPECIFICATION, WHETHER
IN AN ACTION IN CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE, OR ANY OTHER THEORY, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 3 of 54

TABLE OF CONTENTS

GLOSSARY ...5
Executive summary ..7
1 Introduction ...8

1.1 Document structure .. 8
1.2 Tasks involved in this deliverable .. 8

2 Smart Surveillance Scenario ..9
2.1 Software architecture ... 10
2.2 Face classifier cascade model ... 11
2.3 Convolutional neural network models .. 12
2.4 Status of porting to the AXIOM platform using OmpSs .. 14
2.5 Profiling and parallel scalability ... 15

2.5.1 Convolutional neural network inference ... 15
2.5.2 LBP face detector .. 17
2.5.3 Color conversion ... 19

3 Smart Home/Living Scenario .. 21
3.1 Software architecture ... 21

3.1.1 Speaker identification block ... 22
3.1.2 Iris recognition block ... 23
3.1.3 Application workflow... 24

3.2 Performance target goal and initial baseline performance 25
3.3 Optimization process using the OmpSs programming model 26
3.4 Experimental setup ... 27
3.5 Feature extraction module .. 27

3.5.1 Trace of the task execution and obtained performance results 29
3.6 Anisotropic smoothing module ... 31

3.6.1 Trace of the task execution and obtained performance results 33
3.7 Iris recognition module ... 35

3.7.1 Trace of the task execution and obtained performance results 35
4 App/Service Prototyping ... 38

4.1 Rapid prototyping tools for Cyber Physical Systems ... 38
4.2 Interactive machine learning ... 38
4.3 UAPPI... 40

4.3.1 Interaction with Arduino ... 41
4.3.2 Prototyping interactions with machine learning... 42

4.4 Example .. 42
5 Building a data set for prototyping exploration .. 43

5.1 Photo archive for facial recognition system ... 43
5.2 Audio recordings.. 44

6 Extra achievements ... 46
7 Confirmation of DoA objectives ... 46

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 4 of 54

8 Conclusions .. 47
References ... 48
Appendix .. 49

CNN inference .. 49
LBP cascade evaluation kernel ... 49
YUV2RGB color space conversion kernel .. 51
Pseudocode of the feature extraction module ... 53
Pseudocode of the anisotropic smoothing module ... 53
Pseudocode of the iris recognition module .. 54

FIGURE 1. HIGH-LEVEL ARCHITECTURE OF THE SVS PROTOTYPE APPLICATION. .. 10
FIGURE 2. EVALUATION OF THE FACE CLASSIFIER CASCADE ... 11
FIGURE 3. ARCHITECTURE OF THE FACIAL ANALYSIS CNNS TRAINED FOR THE AXIOM PROJECT ... 13
FIGURE 4. USER INTERFACE OF THE AXIOM FACE ANNOTATOR APPLICATION ... 14
FIGURE 5. EXECUTION TIME DISTRIBUTION OF THE DIFFERENT LAYERS OF THE TRAINED CNNS ... 16
FIGURE 6. EXECUTION TIME OF A CASCADE OF FEATURES (RIGHT) FOR AN INPUT IMAGE (LEFT) .. 18
FIGURE 7. PARALLEL SCALABILITY OF THE LBP FACE DETECTION KERNEL ANNOTATED WITH OMPSS 18
FIGURE 8. PARALLEL SCALABILITY OF THE COLOR SPACE CONVERSION KERNEL ANNOTATED WITH OMPSS 20
FIGURE 9. SCHEMA OF THE SPEAKER IDENTIFICATION BLOCKS. .. 22
FIGURE 10. SCHEMA OF THE IRIS RECOGNITION BLOCKS ... 23
FIGURE 11. THE SHL APPLICATION WORKFLOW ... 24
FIGURE 12. SEQUENTIAL APPROACH FOR THE SHL APPLICATION ... 24
FIGURE 13. PIPELINE ARCHITECTURE OF THE CEPSTRUM ANALYSIS ALGORITHM. ... 27
FIGURE 14. THE ORIGINAL SFBCEP SEQUENTIAL PROGRAM. .. 28
FIGURE 15. THE PROPOSED SFBCEP PARALLEL PROGRAM.. 29
FIGURE 16. PARAVER TRACE OF THE SFBCEP PROGRAM USING 2 THREADS OF THE AEP. .. 29
FIGURE 17. PROFILING OF THE FEATURE EXTRACTION MODULE. THE PROFILE WAS DONE ON THE AEP USING THE OPERF AND

THE OPREPORT TOOLS. ... 30
FIGURE 18. EXAMPLE OF EXECUTION OF THE ANISOTROPIC SMOOTHING MODULE. THE ORIGINAL SAMPLE IMAGE IS SHOWN ON

THE LEFT SIDE; THE PROCESSED IMAGE IS SHOWN ON THE RIGHT SIDE. THE SAMPLE WAS PROCESSED WITH THE

ANISOTROPIC SMOOTHING TASK WITH 100 INTERNAL ITERATIONS... 31
FIGURE 19. SECTION OF THE IMAGE DURING THE PROCESSING OF EVEN AND ODD PIXELS. .. 32
FIGURE 20. PARAVER TRACE OF THE ANISOTROPIC SMOOTHING TASK WITH TWO DIFFERENT GRANULARITIES WITH THE SAME

TIMESCALE IN HORIZONTAL AXES. THE UPPER GRAPH SHOWS EXECUTION OF THE TASK WITH THE GRANULARITY FIXED TO

ROW LEVEL; THE LOWER GRAPH SHOWS THE EXECUTION OF THE TASK WITH GRANULARITY OF HALF IMAGE LEVEL. 33
FIGURE 21. SPEEDUP OF THE ANISOTROPIC SMOOTHING TASK ON THE AEP WITH 1 AND 2 WORKER THREADS. RESULTS ARE

SHOWN WITH SEVERAL TASK GRANULARITIES, FIXED BY THE NUMBER OF PIXELS PROCESSED ON EACH TASK. 34
FIGURE 22. EXECUTION DIAGRAM OF THE IRIS RECOGNITION TASK IN THE SEQUENTIAL AND PARALLEL SOLUTIONS. 35
FIGURE 23. PARAVER TRACE OF THE IRIS RECOGNITION TASK USING 2 THREADS OF THE AXIOM EVALUATION PLATFORM..... 36
FIGURE 24. PROFILING OF THE IRIS RECOGNITION KERNEL. THE PROFILE WAS DONE IN THE AEP USING THE OPERF AND THE

OPREPORT TOOLS. .. 37
FIGURE 25. IN MACHINE LEARNING, PEOPLE ITERATIVELY SUPPLY INFORMATION TO A LEARNING SYSTEM AND THEN OBSERVE

AND INTERPRET THE OUTPUTS OF THE SYSTEM TO INFORM SUBSEQUENT ITERATIONS. IN INTERACTIVE MACHINE

LEARNING, THESE ITERATIONS ARE MORE FOCUSED, FREQUENT AND INCREMENTAL THAN TRADITIONAL MACHINE

LEARNING. THE TIGHTER INTERACTION BETWEEN USERS AND LEARNING SYSTEMS IN INTERACTIVE MACHINE LEARNING

NECESSITATES AN INCREASED FOCUS ON STUDYING THE USER’S INVOLVEMENT IN THE PROCESS. 39

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 5 of 54

FIGURE 26. AN INTERACTION DESIGNER CAN DEVELOP PROTOTYPES USING UAPPI RUNNING ON HIS COMPUTER’S BROWSER,
AND LATER RUN THEM ON THE UDOO BOARD FOR TESTING. ... 41

FIGURE 27. UAPPI BLOCKS FOR A LAMP THAT CAN BE POWERED UP SMILING IN FRONT A CAMERA. .. 43

GLOSSARY
AEP – AXIOM evaluation platform
ARM – Instruction set architecture developed by ARM Holdings Ltd.
ASIC – Application-specific integrated circuit
ATLAS – Automatically tuned lineal algebra software
BLAS – Basic linear algebra subprograms
CNN – Convolutional neural network
FC – Fully-connected layer
FFT – Fast Fourier transform
FIFO – First in first out
FP32 – 32-bit floating point number
GCC – GNU compiler collection
GLFW – Open-source multiplatform library for OpenGL, OpenGL ES and Vulkan
GMM – Gaussian mixture model
GUI – Graphical user interface
HCI – Human Computer Interaction
HDL – Hardware description language
HLS – High-level synthesis
IDCT – Inverse discrete cosine transform
IDE – Integrated development environment
INT32 – 32-bit integer number
IP – Intellectual property or internet protocol (depending on the context)
IRM – Iris recognition module
LBP – Local binary pattern
LibAv – Open-source libraries derived from the FFmpeg project to handle multimedia data
LRN – Local response normalization
Mali – A GPU microarchitecture developed by ARM Holdings Ltd.
Mercurium – OmpSs compiler
Nanos++ – OmpSs runtime
NDA – Non-disclosure agreement
NEON – SIMD extensions for the ARM instruction set
NIC – Network Interface Controller
OpenCV – Open source computer vision library
OpenGL ES – Reduced specification of the OpenGL standard that targets embedded devices
PCM – Pulse-code audio modulation
PL – Programmable logic
PReLU – Parametric rectified linear unit
Qt – Cross-platform application framework developed by The Qt Company
RGB – Red-Green-Blue color space format
ROC – Receive operating characteristic

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 6 of 54

ROI – Region of interest
RTL – Register transfer language
RTSP – Real-time streaming protocol
SGEMM – Single-precision floating-point general matrix multiply
SHL/SLH – Smart home living scenario developed for the AXIOM project
SIMD – Single instruction, multiple data
SMP – Symmetric multiprocessing
SMT – Simultaneous multithreading
SoC – System on chip
SPro – Open source speech signal-processing toolkit
SSE2 – Streaming SIMD Extensions 2
STD – Standard deviation
SVM – Support vector machine
SVS – Smart surveillance scenario for the AXIOM board
VAD – Voice activity detection
VHDL – VHSIC hardware description language
VPM – Video processing module
YUV – Luminance blue–luminance red–luminance color format

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 7 of 54

Executive summary
This deliverable reports the application development and porting for Smart Video Surveillance and the
Smart Home Living scenarios.

The SVS case study implements a real-time face analysis framework that processes video feeds for
surveillance applications. This framework is the core component of a software solution that is aimed to
both increase security and gather demographic statistics in highly-crowded areas such as train stations,
airports and shopping malls. In order to solve this challenging problem, an initial application framework
prototype was developed for the target SoC included in the AXIOM board. The initial analysis and
design space exploration of such face analysis kernels shows that the OmpSs programming model
greatly increases the programmer’s productivity while scaling performance with minimal efforts. Ad-
ditionally, the developed prototype also served as a baseline for testing and training from scratch the
required convolutional neural networks required for estimating the gender and age of detected faces.

The SHL case study implements a solution to enhance the security level of dwellings, and to increase
the natural interaction for end-users and their homes. The SHL solution was implemented looking for-
ward to take advantage of the heterogeneous resources of the AXIOM system through the OmpSs pro-
gramming model. A set of benchmarks were analyzed and enriched by the OmpSs directives in order
to exploit the underlying SMP resources. The exploration has shown the possibility of easy parallelizing
the SHL application by relying on OmpSs directives. The obtained results, knowledge gained on OmpSs
programming model, and the visualization/profiling tools have created a solid base to continue the im-
provement of the SHL algorithms. Future work will take advantage of FPGA resources and scalability
across nodes built from interconnecting several AXIOM boards.

Designing an IoT product requires a different approach to user experience. Moreover, in AXIOM the
challenges addressed by the two case studies rest on machine learning solutions. We must acknowledge
that today there are no authoring tools for rapid prototyping Apps or Services based on Interactive
Machine Learning. In the design of our prototyping environment, we found that the best opportunities
were offered by App Inventor, an open source Web IDE. We extended App Inventor adding machine
learning capabilities to facilitate the production of interactive prototypes of the future applications and
services based on the challenges addressed in both case studies.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 8 of 54

1 Introduction

1.1 Document structure
This deliverable contains a report on the work about the proof of concept and the porting of the SVS
and SHL scenarios. The work is reported and organized as follows:

• Section 2 describes the porting activity for the SVS scenario;

• Section 3 describes the porting activity for the SHL scenario;

• Section 4 describes the prototyping of envisioned applications and services;

• Section 5 describes the data collection activity used for machine learning training.

1.2 Tasks involved in this deliverable
This deliverable is the result of the work carried out during the following task:

• Task 3.2: Proof of Concept and Porting of SHL and SVS Case Studies

Selection, envisioning and refinement of Scenarios to be put into scene by prototypes of AXIOM
architecture in the domain of Smart Living Home and Smart Video Surveillance.

Porting of the Smart Living Home Application and Smart Video Surveillance to the OmpSs
Programming Model.

Partner UNISI (Interaction Design group) will envision new scenarios for the using the AXIOM
CPS platform. UNISI will take care of the “Role Prototyping” of the App/Service, while ad-
dressing the two challenges of services/system integration and appealing user experience.
UNISI will define the Interaction Design pattern in the design of the application on the AXIOM
CPS. UNISI will carry out the Conception and Definition of the user experience in adopting
into scene the new enabling CPSs.

Partner VIMAR will design and develop algorithms for real-time data management used in the
Home Automation application. Partner VIMAR will develop a modular, cost and power effec-
tive software architecture including a reference version and the porting of such reference ver-
sion to the OmpSs programming model (the hardware part will be developed in WP6).

Partner HERTA will design and develop algorithms for real-time face recognition used in the
smart surveillance application. Partner HERTA will optimize the fine-grained parallel algo-
rithm for FPGA accelerator and will develop and port their application to AXIOM architecture
using OmpSs.

Partner BSC will give support to VIMAR and HERTA for the porting of the applications to
OmpSs.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 9 of 54

2 Smart Surveillance Scenario
The Smart Surveillance Scenario (SVS) use case is modelled for serving as a proof of concept for an
embedded version of a facial analysis product for marketing applications. This scenario leverages the
AXIOM platform for performing low-power H.264 video decoding, face detection, and for conducting
gender and age estimation in real-time on each person’s face appearing on a given video frame. Potential
future end-user implementations of such technology include automated video surveillance for prevent-
ing terrorism and security threats, and marketing applications for the retail sector among many others.
Those scenarios extensively rely on analyzing facial features on crowded locations to avoid discarding
frames when they are broadcasted from live surveillance IP cameras. This performance requirement can
be met by using a combination of traditional computer vision techniques and convolutional neural net-
works to guarantee high-accuracy.

In order to avoid architecting IP blocks for implementing those kernels in an RTL hardware description
language, the OmpSs programming model and #pragma annotations are extensively used to port se-
quential versions of the algorithms directly coded in C/C++ language. Complex steps such as caching,
overlapping memory transfers with computations to hide latencies, and thread scheduling rely on the
rest of the system architecture, e.g., on the BSC’s Nanos++ runtime. On the other hand, the automatic
generation of HDL code of the hardware IP blocks from annotated C/C++ code is managed by BSC’s
Mercurium compiler infrastructure by seamlessly interacting with Xilinx’s Vivado HLS tools to gener-
ate the proprietary bitstream for the target FPGA microarchitecture.

In deliverable D3.1, it was disclosed that the SVS implemented in WP3 would rely mainly on four high-
level kernels that constituted a good representation for emerging video processing and machine learning
workloads. These kernels are summarized again in Table 1 enclosed below.

Table 1. Selected workloads for the SVS

Kernel Name Description

H264_video_decoding H.264 codec decoder working at slice level

LBP_cascade_evaluation Face detection based on LBP patterns

CNN_inference Convolutional neural network inference engine

YUV_to_RGB Color space conversion for displaying frames

The selected kernels are in fact subsequently split into several low-level calls to other kernels that im-
plement partial sub steps of the abovementioned processes. For instance, H264_video_decoding ker-
nel internally include entropy decoding, inverse quantization, IDCT, deblocking filtering, intra-predic-
tion and motion compensation. Similarly, the evaluation of the cascade classifier of LBP features
LBP_cascade_evaluation performs several resizing and filtering operations to build a synthetic
image pyramid, while CNN_inference depends on the inner architecture of the neural network model.
In this latter case, the most resource-intensive parts are convolutions and the evaluation of fully-con-
nected layers as it has been pointed out in prior research works [1]. Finally, the color space conversion
kernel YUV_to_RGB) is the most naïve one, and certainly does not constitute a challenging workload
when compared to the others.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 10 of 54

Source code of the selected kernels is included in the Appendix as a reference. Due to the complexity
and length of the H264_video_decoding kernel, its corresponding code listings were omitted in this
deliverable.

Since the first prototype of the AXIOM board features the Xilinx Zynq UltraScale+ ZU9EG SoC, H.264
video decoding cannot be performed on the fixed-function logic decoder since this hardware IP block
is only available on the ARM Mali video processor included in the Xilinx Zynq UltraScale+ EV series.
As such, for the moment it was decided not to implement video decoding on the FPGA using a third-
party IP block with the help of SECO as it was originally planned. The main reason behind this decision
was to free up as much programmable logic (PL) resources as possible for the AXIOM NIC block, and
for offloading time-critical face detection and CNN inference computations.

2.1 Software architecture
Between months m17 through m19, an initial working prototype of the SVS application was coded with
the aim of integrating the execution flow of all the involved kernels for performing facial analysis using
input H.264 videos in an easy manner. Since the standalone application kernels were meant to be pro-
filed and optimized with the toolsets and runtime environments provided by BSC, it was decided to
develop the monolithic application in standard ANSI C language. This decision greatly simplified the
debugging process and eased the interaction with the Mercurium compiler used for compiling the an-
notated kernels. As such, the prototype application interfaced with minimal third-party libraries mainly
for display (OpenGL ES), and for video demuxing and decoding (LibAV [2]).

Figure 1 depicts the high-level architecture of the different software components involved for profiling
and testing the selected kernels.

OpenGL ESGL Texture Displaylibavformat

H.264 Slice

libavcodec

YUV Frame lbp_cascade_evaluation

CNN_inference

Input Video

YUV_to_RGB

LBP Feature Cascade

Gender CNN Model

Age CNN Model

Figure 1. High-level architecture of the SVS prototype application.

Input video footage (either a file or a live RTSP stream) is parsed and demuxed by means of the li-
bavformat library, which is manually set to only retrieve a video stream tagged as AV_CO-
DEC_ID_H264. At this point, H.264 slices are decoded on software on CPU cores by relying on the
multithreaded implementation of the libavcodec library. It should be noted that at a future stage of

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 11 of 54

the AXIOM project, this video software decoding layer could be replaced by an IP block if enough PL
resources are freed up.

The output of the decoder is usually a YUV4:2:0 raw video frame, in which chrominance components
are discarded as the selected facial analysis algorithms require only luminance. Therefore, an output
buffer of uint8_t luminance components obtained from the decoded frame is used as an input of the
LBP_cascade_evaluation and CNN_inference kernels. Finally, the results of such steps (e.g.
bounding of located faces and estimation of demographic attributes) are annotated over the RGB color
version of the decoded frame obtained after calling to the YUV_to_RGB kernel. After such color con-
version takes place, the final resulting buffer is mapped into a texture to display the final results through
the OpenGL ES pipeline.

Since the development and debugging of the prototype application was conducted on a PC platform in
which the GPU driver used for display only has OpenGL support on Linux environments, the GLFW
version 3.2.1 library was also selected for ensuring portability. This fact enabled OpenGL ES support
for the ARM Mali-400 GPU included on the Xilinx Zynq UltraScale+ SoC, and the typical OpenGL
stack available on PC platforms.

.

2.2 Face classifier cascade model
The binary face classifier model used for locating faces on the SVS application prototype was trained
by HERTA using proprietary internal tools and databases, and will not be publicly released at the end
of the AXIOM project. This model consists of a cascade of features trained using a customized version
of the classic Adaboost algorithm [3] (see Figure 2). As previously agreed, the selected features are
based on the well-studied local binary patterns (LBP) since they provide a good trade-off between ac-
curacy and speed for low-power embedded devices. Even though state of the art results in accuracy for
face detection are obtained using very deep CNNs, it is still unfeasible to adopt them in low-power
embedded devices that target video frames involving dozens of simultaneous faces at HD resolutions
and beyond. Real-time applications using deep CNNs for object detection at HD or 4K resolutions,
currently require a full-custom ASIC specifically designed for inference, a high-end discrete GPU or a
high-density FPGA. All three implementations are expensive, and the latter two usually dissipate more
than 100 Watts at 16 nm [4] [5].

48x48
Image Patch

Feature 1

Feature 2

Feature 3

Feature 4

Decision+

Decision

Decision

Decision

+

+

Feature N
+

#Features

(-)

(+) LBP Patterns

Figure 2. Evaluation of the face classifier cascade

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 12 of 54

Additionally, LBP features do not require to perform complex operations, and work with 8-bit integer
arithmetic, which are more power-efficient and simpler to map to the underlying FPGA architecture
during synthesis than other features requiring floating point arithmetic.

As a result of this, the obtained cascade has over a thousand LBP features, works with faces as small as
48x48 pixels, and when evaluated accumulates single-precision floating point scores resulting from
extracted features until the target threshold is met or a given feature early rejected. Therefore, an ex-
haustive sliding-window approach is effectively used for analyzing the input image with the purpose of
quickly discarding regions not containing faces. Even though less accurate, this approach clearly has
benefits when compared to other face detection algorithms involving CNN architectures such as the
widely used VGG-16 [6], GoogleNet [7], ResNet [8] or variations of the Faster R-CNN [9] framework.

Further work will be carried out with our model during FPGA implementation to avoid using floating
point arithmetic for scores. A common approach is to replace these values with binarization and fixed-
point arithmetic, similarly as it is currently being done for neural network pruning targeting inference
on low-power embedded devices. These strategies will be explored between months m26 and m36.

Finally, the obtained trained cascade model and the evaluation source code used was kept confidential,
and distributed between the interested AXIOM partners under NDA in order to discuss the potential
optimization strategies to be followed.

2.3 Convolutional neural network models
After face coordinates and dimensions are located on a given video frame, the SVS prototype applica-
tion conducts the required underlying analysis of the facial features for marketing and surveillance. This
analysis is implemented by means of several CNNs that are meant to be executed in parallel on the
programmable logic using task-based parallelism.

During months m13 and m20 the construction and modelling of such networks took place. So far, the
AXIOM project has succeeded in training two highly-accurate deep CNNs for face gender classification
and age estimation. The architecture of such networks was designed from scratch, and thus it is not
based on the generic deep learning models already found in popular frameworks such as Caffe [10],
Torch [11] or TensorFlow [12]. Figure 3 depicts the different layers used in the gender classifier, and
age regressor. The binary classifier for gender estimation is implemented using a 10-layer neural net-
work while the age regressor consists of 11 layers. The input of both networks is a given detected face
(i.e. image region) that must be downscaled to map the expected input size of the first convolutional
layer. At this point, each network use different types of layers by relying on convolutions, parametric
rectified linear units (PReLU), standard deviation (STD) or max-pooling, local response normalization
(LRN), fully-connected (FC), maxout units and softmax functions. Finally, the output of the gender
classifier network is an integer (0,1) encoding whether the input image is male (0) or female (1). Simi-
larly, the regressor outputs the age estimation normalized in the interval (0.0-1.0), and encoded using a
32-bit floating-point number.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 13 of 54

5x5 Convolution

5x5 Convolution

STD Pooling

LRN

FC

Maxout

FC

Softmax

(0, 1)

PReLU

PReLU

[Male (0) / Female (1)]

Ge
nd

er
 cl

as
sif

ie
r

7x7 Convolution

PReLU

Max Pooling

FC

Maxout

FC

Maxout

(0.0-1.0)

Max Pooling

FC

PReLU

5x5 Convolution

Ag
e

Re
gr

es
so

r

[Normalized Estimated Age]

Figure 3. Architecture of the facial analysis CNNs trained for the AXIOM project

The purpose of designing and training such networks from scratch was useful for HERTA for gaining
highly valuable knowledge about this very complex fine-tuning process. Another important reason was
to succeed producing models with lower computational footprint than other alternatives typically re-
quiring a power-hungry high-end discrete GPU for real-time CNN inference.

The obtained ROC curves benchmarking the accuracy of such networks on several research databases
are going to be kept confidential, as they were trained using proprietary HERTA face databases in
combination with several data augmentation techniques, and will be later integrated on a future com-
mercial product. The size of the database used for training the networks was tens of thousands of pic-
tures before applying data augmentation, which by itself increased several orders of magnitude the
number of pictures. Other model parameters such as dimensions of matrices, the strides used for con-
volutional layers, and number of channels are also not going to be disclosed on publicly available de-
liverables. Therefore, another approach was used to achieve our project goals as described below.

In order to guarantee compliance with the mandate of open access research data sets described in the
guidelines of the Horizon 2020 program, HERTA partnered with UNISI to construct a face database
for retraining the CNN models earlier described. This face database will be publicly released on the
AXIOM website at the end of the project. It is expected that this approach will be a win-win for both
all the partners involved in the AXIOM project and the whole academic research community:

- Firstly, HERTA can add the pictures collected by UNISI to its internal proprietary face database
to improve the quality of the models used in its products.

- Secondly, AXIOM partners will have access to working CNN models trained exclusively with
the database collected by UNISI, which will be enough for evaluating optimization strategies
for speeding-up CNN inference on the PL of the AXIOM board. This also guarantees repro-
ducible research results, as there are no IP restrictions with such database and models.

- Finally, the research community will also have the possibility of downloading the AXIOM face
database using a permissive license. As such, the research community can also use the pictures
to increase the size of their data sets, and thus improve the overall quality of deep learning
models for face analytics.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 14 of 54

Figure 4. User interface of the AXIOM face annotator application

Once this decision was agreed with UNISI, during month M14 a face annotator tool (shown in Figure
4) was developed by HERTA to increase the productivity of the process of capturing and labelling
pictures for the facial database. The open-source application is available at the project’s GIT server,
and was successfully tested working with USB webcams, network-based surveillance cameras, and pre-
recorded video files.

The AXIOM face annotator tool was developed in C++ by relying on the Qt5 cross-platform application
framework. The idea of this side development was also to label attributes such as gender, age, ethnicity
and other features (i.e. glasses, sunglasses, beard and moustache) in the pictures collected by UNISI.
Future improvements could also include the possibility of adding fiducial landmark points to further
improve the accuracy of the CNN models.

2.4 Status of porting to the AXIOM platform using OmpSs
In accordance with the architectural decisions described in subsection 2.1, the selected kernels were
isolated in separated .c and .cpp files and directories. The full source code of the LBP-based face
classifier, CNN inference engine, and color space conversion is available on the AXIOM GIT server.

The development of the prototype was conducted on an x86-64 workstation with the aim of transpar-
ently porting the CPU host code later to the ARMv7 and ARMv8 architectures available on Xilinx SoC
platforms by means of the backend of the C/C++ compiler used for generating the application binary.
As such, the host CPU code containing the main software loops, file I/O management, user interface
management, and final rendering/screen compositing was compiled using the stable branch 5.4.x of
GCC. These parts of the SVS prototype application were obviously not related to FPGA PL offloading,
and therefore did not target any performance optimizations. Device code targeting the dataflow engine
to be synthesized on PL was annotated following the advice and recommendations of BSC’s research-
ers. Typically, the code of the selected algorithms (see the Appendix) were implemented using nested
loops, and therefore parallelized using #pragma omp taskloop and #pragma omp for directives.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 15 of 54

The source code of a lightweight work-in-progress SVS application (demographics) is also available
on the AXIOM project GIT server. When compiled, it works with any input video file container format
supported by LibAv or URL address of a remote RTSP surveillance camera. The application has been
successfully compiled and tested on both an x86-64 Linux workstation and on a Xilinx ZC706 board.

In order to simplify the parallelization process to the maximum extent and minimize errors, it was de-
cided to target first during the second year SMP architectures (i.e. x86-64, ARMv7 and ARMv8) with
OmpSs annotations (i.e. #pragma omp target device smp) to ensure the correctness of the paral-
lelized kernel code. It is expected that once the interaction between OmpSs@FPGA and Nanos++
runtime for the management of FPGA memory data transfers is fully completed (i.e. data-copy clauses)
during the third year, RTL code targeting the FPGA PL will be automatically generated. As it was
already discussed in deliverable D4.1, this stage of the design flow will be implemented by calling the
Xilinx Vivado HLS compiler simply by replacing the #pragma omp target device smp annotation
with the fpga target. Finally, the bitstream generation of kernels will be implemented using scripts
developed for automatically calling Xilinx’s synthesis tools available in the Vivado suite.

Scalability among several AXIOM boards will be achieved during third year by means of the Nanos++
runtime and OmpSs@Cluster, as it has already been demonstrated for a matrix multiply example in
deliverable D4.2. As it is well-known, the matrix multiply operation is also a requirement for imple-
menting convolutions and fully-connected layers when inferencing CNNs.

Regarding the main binary generation, the isolated kernel source code .c and .cpp files were compiled
with OmpSs/Mercurium version 2.0.0 713c99c using the --ompss and --instrument command
line options for generating the required object files, linked against Nanos++ version 0.10.3, and with
the remaining sequential modules plus the required third-party libraries. This final linking step was
performed also using BSC’s Mercurium compiler.

2.5 Profiling and parallel scalability
Initially, the selected kernels were studied in an isolated manner with minimal test applications using
the same input files (e.g. same input pictures for both LBP face classifier / YUV2RGB kernels, and
same matrices for CNN inference). The validation and correctness of the parallelized kernels were guar-
anteed by matching the obtained results against expected output files, which were previously computed
using the sequential CPU version of the same algorithms (cf. D7.1 Section 6).

Parallel scalability on the SMP target platforms were studied by launching the test applications and
subsequently varying the NX_SMP_WORKERS environment variable between executions, effectively it-
erating multiple runs ranging from 1 to the maximum number of cores available in the underlying plat-
form (i.e., 12 logical cores in the case of the Intel Core i7 desktop platform featuring hardware-enabled
SMT, 2 physical cores in the case of the Xilinx ZynQ-7000, and 4 physical cores on the Xilinx Zynq
UltraScale+ ZU9EG). Finally, hand-coded SIMD vectorization on CPUs was discarded as a CPU base-
line for the LBP face classifier and YUV2RGB kernels. Even though these kernels offer opportunities
for hand-crafted SIMD parallelization, this was not an objective pursued by the AXIOM project as the
parallelization efforts are managed by the OmpSs programming model and runtime.

2.5.1 Convolutional neural network inference
CNN inference was a special case, when compared to the other kernels. Even though it is possible to
implement parallel naïve CPU versions of the layers involved in both gender and age estimation CNNs

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 16 of 54

with nested loops, this approach is not computationally efficient as it involves low-level matrix multiply
operations. Matrix multiply on CPUs is nowadays a well-studied problem, and it is usually implemented
with BLAS libraries optimized by hand at the assembly level with SIMD instructions. As such, we
selected the open-source ATLAS library [13], and relied on the SGEMM operation as the low-level
CPU backend, even though at the high level the code was annotated with OmpSs directives. In the
future, we plan to use also as a CPU baseline the GEMM-lowp [14] library recently released by Google,
as it includes support for 8-bit matrix multiply operations (used in quantized/pruned CNNs), and it is
optimized for ARMv7 and ARMv8 platforms at hand using assembly NEON instructions. This latter
library is a more suitable baseline for comparing the CPU versions of the implementation of CNNs
layers running on the ARM cores available on the FPGA against the computations offloaded to the PL.

Gender Estimation CNN
Execution Time Distribution

Convolution PReLU STD Pooling
LRN FC Maxout
Soft-max 0 5 10 15 20 25 30 35 40

[L1] 5x5 Convolution
[L2] PReLU

[L3] STD Pooling
[L4] LRN

[L5] 5x5 Convolution
[L6] PReLU

[L7] FC
[L8] Maxout

[L9] FC
[L10] Soft-max

Execution Time (ms)

93.7%
4.91%

Age Estimation CNN
Execution Time Distribution

Convolution PReLU Max pooling FC Maxout

7.69%

92,29%

0 5 10 15 20 25 30 35

[L1] 7x7 Convolution
[L2] PReLU

[L3] Max pooling
[L4] 5x5 Convolution

[L5] PReLU
[L6] Max pooling

[L7] FC
[L8] Maxout

[L9] FC
[L10] Maxout

[L11] FC

Execution Time (ms)

Figure 5. Execution time distribution of the different layers of the trained CNNs

Due to the importance of CNN inference for the SVS application, the different neural network layers
were profiled for both trained CNN models to determine the most time-consuming layers (see execution
times in Figure 5). These benchmarks were conducted by compiling the CNN inference engine to target
the x86-64 architecture, and executed on an Intel Core i7-4770 3.4 GHz microprocessor using as an
input a single face. The BLAS library used for these tests was the ATLAS library version 3.10.2, which
as opposed to the recently-released Intel MKL-DNN [15] library, only has support for old SSE2 SIMD
vector extensions. Nevertheless, this fact was not a major drawback for an initial code hotspot analysis.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 17 of 54

The obtained performance results included below depict the latency in milliseconds per layer, and also
the inference time distribution across layers for each CNN model.

As the obtained results show, it is only worth to offload to the PL of the FPGA convolutions and fully-
connected layer computations. These results are in line with inference time distributions reported in
earlier works found in the literature for other network architectures such as VGG-16 [1]. As it is also
known, those layers are internally implemented using linear algebra by means of the abovementioned
SGEMM operation available in the BLAS specification. The source code of the convolve operation
used in the CNN inference engine is included as a reference in the Appendix. The implementation
annotated with OmpSs directives, and an in-depth analysis of a naïve matrix multiply kernel working
on the PL of the Zynq-7000 SoC was conducted by BSC researchers. Kernel source code, and prelimi-
nary results for this study are detailed in sections 2.4.1 and 4.1.2 of deliverable 4.2.

Unfortunately, more sophisticated alternatives for speeding up convolutions on the AXIOM board re-
quire a low-level access to the DSP48E2 slices found on the UltraScale+ architecture. These optimiza-
tions were proposed by Xilinx during 2016 in the whitepaper Deep Learning with INT8 Optimization
on Xilinx Devices [15], and basically rely on packing two INT8 operations in the multiply-accumulate
unit available in the DSP48E2 slice. However, this optimal solution requires to reschedule HERTA’s
porting efforts from software development and analysis to retraining and pruning the CNNs models.
The challenge is to retrain the CNNs using low-precision 8-bit integers rather than single-precision
floating point arithmetic while keeping a similar ROC accuracy.

When these pruned CNNs are ready, further potential low-level optimization proposals may be dis-
cussed with BSC for future integration in the OmpSs@FPGA framework.

2.5.2 LBP face detector
The selected face detector kernel relies on boosted ensembles and a well-known image descriptor (i.e.
LBP). The core algorithm of the evaluation of the classifier cascade basically consists of two high-level
nested loops (see the pseudocode included in the Appendix). These loops are in charge of computing
the boosted ensembles by relying on a sliding window, which is responsible for scanning a synthetic
image pyramid generated from the input frame. This image pyramid is necessary for enabling the de-
tection of faces of arbitrary size using a fixed-sized sliding window. On top of these loops, there is an
additional one responsible for executing the face detector kernel for the multiple scales constituting the
image pyramid.

Internally, the sliding window must evaluate all LBP features until a given threshold is violated (see
Figure 6). As such, this algorithm yields a highly irregular control flow due to the fact that the iteration
count of the inner loop depends on the characteristics of the input image. Therefore, if an input image
does not contain any faces, the first LBP features of the cascade will soon violate thresholds, and the
remaining loop iterations will not be completed thus dramatically speeding up the kernel. On the other
hand, if the amount of faces appearing on a given image represents a high percentage of the total area
of the input frame, the little opportunities available for early rejection of image regions will increase
the execution time of the face detection kernel.

This unbalanced behaviour is common for any object detection cascade classifier based on the sliding
window approach. As the sample depicted in Figure 6 illustrates, the processing latency in clock cycles
of each image patch analyzed by the sliding window (right) is highly correlated with image regions
containing faces (left).

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 18 of 54

Figure 6. Execution time of a cascade of features (right) for an input image (left)

From a coarse-grain parallelization perspective, a challenging scenario is considered as the baseline
input for the experiments. As such, kernel parallelization efforts were conducted using as an input the
same 1080p picture containing 25 faces. This ensures that a high percentage of image regions will reach
the latest LBP features rather than being discarded too early on the first stages of the cascade.

The selected picture is available on the private AXIOM GIT server and is named testImage.raw for
ensure reproducibility of the obtained results.

0

500

1000

1500

2000

2500

3000

3500

4000

[Xilinx Zynq-7000]
Opt. Level -O0

[Xilinx Zynq-7000]
Opt. Level -O3

[Intel Core i7-4770]
Opt. Level -O0

[Intel Core i7-4770]
Opt. Level -O3

Ex
ec

ut
io

n
Ti

m
e

(m
s)

LBP Face Detection Kernel

1 Thread 2 Threads 3 Threads 4 Threads

Figure 7. Parallel scalability of the LBP face detection kernel annotated with OmpSs (please note that Zynq 7000 is a 32-bit
platform while Intel Core i7 is a 64-bit platform)

For the initial design space exploration and porting on SMP platforms, it was decided to create a task
for each one of the LBP kernel calls required for evaluating the NUM_SCALES images constituting the
synthetic input image pyramid. As the code included in the Appendix shows, it is only necessary to add
a single #pragma omp task annotation preceding the header of the LBPCascadeEvaluation func-
tion implementing such kernel. When the execution of the kernel concludes, a #pragma omp
taskwait directive is also necessary to ensure synchronization and the correctness of parallel execu-
tion. Even though that further low-level optimizations are possible, this simple parallelization strategy
succeeded in obtaining a 1.16x speed up on the dual ARM A9 CPU cores of the Zynq-7000 platform

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 19 of 54

when the number of worker threads was increased from one to two. Similarly, a 1.44x speed up was
observed when increasing the number of worker threads from one to four on the Intel Core i7-3400.

It should be noted that these results were obtained when the LBP kernel was compiled without enabling
aggressive compiler optimizations. In order to determine the potential effect of such optimizations, the
kernel was recompiled again using the -mfpu=neon option in the case of the ARMv7 target, and
optimization level -O3 on both x86-64 and ARMv7 (32-bit) targets. These optimizations significantly
reduced the execution time on the ARM A9 cores (see Figure 7), and yielded a 3.06x speed up when
compared to the unoptimized -O0 baseline OmpSs kernel code running a single worker thread. When
the worker thread count was increased to two, it yielded a 6.59x speed up against the -O0 version, and
a 2.15x against the -O3 optimized version, respectively. The speed ups observed in the -O3 optimized
versions of the executed on the Intel Core i7-3400 platform were almost negligible. This latter effect
was probably related to the aggressive prefetching, branch prediction, and out-of-order execution capa-
bilities available on the x86-64 cores when compared to the simpler in-order ARM A9 cores. It has also
be stressed that the typical power consumption of the Zynq-7000 is about 5W while the Core-i7 typi-
cally uses a 100W (more precise measurements are also in progress).

Experiments enabling more than two worker threads on the dual ARM A9 cores were not possible, as
the main application crashed and the bug could not be successfully tracked. However, it is expected that
further increases of the worker thread count beyond two would not bring any particular benefits on the
dual core platform when both cores were running at 100% of usage while executing the kernel.

2.5.3 Color conversion
Another important step involved in the SVS prototype application is video display to end-users. The
main kernel involved in this task is the one related to color space conversion (YUV_to_RGB). Two
different versions of this kernel have been implemented (i.e. using floating point (FP32) and integer
(INT32) operations). The main idea behind this decision was to determine if the type of operations
substantially impacted on performance. As it is shown in the Appendix, the color space conversion
kernel was parallelized using the OmpSs programming model simply by adding a single annotation
(#pragma omp taskloop grainsize(16) private(i,j,y,u,v,r,g,b)) on both FP32 and
INT32 implementations.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 20 of 54

0

50

100

150

200

250

300

[Xilinx Zynq-7000] FP32 [Xilinx Zynq-7000] INT32 [Xilinx Zynq-U+] FP32 [Xilinx Zynq-U+] INT32 [Intel Core i7-4770] FP32 [Intel Core i7-4770] INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

YUV to RGB color space conversion kernel

1 Thread 2 Threads 3 Threads 4 Threads

Figure 8. Parallel scalability of the color space conversion kernel annotated with OmpSs

The initial results of such parallelization on CPU cores are shown on Figure 8. As it was initially ex-
pected, the execution time scales with the number of cores available on the underlying platform (Zynq-
7000, Zynq UltraScale+, and Intel Core i7-4770) as the number of worker threads are increased. In the
case of the Zynq-7000, since the SoC features only two ARM A9 cores, creating more than two worker
threads even degrades performance substantially. On both quad-core platforms (UltraScale+ and Intel
Core i7-4770) execution time is further reduced when the worker thread count equals four. It should be
noted that the highest speed-ups (2x) are obtained when the number of worker threads is set to two, and
then performance improvements marginally diminish as the worked thread count is further increased.
Again this comparison is done only taking into account the pure performance and not the global power
consumption which is about 5W in the case of Zynq- Ultrascale+ while it is about 100W in the Intel
Core i7.

On the other hand, since the final color picture quality is quite similar if the low-level kernel implemen-
tation is switched from FP32 to INT32 operations, extra reductions in the execution time are possible
simply by relying on integer operations. This improvement in performance related to INT32 operations
was quantified, and on average provided an additional 15% benefit.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 21 of 54

3 Smart Home/Living Scenario
The SHL case study implements a solution to enhance the security level and comfort of homes. The
developed solution consists of a system that can analyze multimedia streams broadcasted from specific
points inside and outside of smart homes. This system receives multimedia streams broadcasted from
devices attached to the network. Then demuxes and decodes audio and video streams, and analyzes
raw data using machine learning algorithms to gather precious information. The information extracted
from multimedia streams are subsequently processed to define the feedback that will be finally reported
to the end-users living in the smart home environment.

The main goal of the SHL scenario developed in the context of the AXIOM project is to achieve a high
level of home automation, and to allow a natural interaction between end-users and their homes. To
achieve this goal, it is required not to interrupt the end-user action flow while analyzing data, and to
generate the feedback very rapidly. This challenge represents a strict timing constraint in the envisioned
architecture of the SHL scenario.

In order to take advantage of the heterogeneity and the cluster architecture developed for the AXIOM
project, the SHL software application extensively relies on OmpSs directives. Several OmpSs@SMP
solutions have been explored with the aim of defining both the tasks that can be concurrently executed
and the granularity required to satisfy the performance targets of the SHL application. The results of
this analysis of the multi-core system will be used for the actual development of the FPGA and the
cluster to exploit the resources of the AXIOM board. In this way, OmpSs@FPGA directives will be
used to efficiently synthesize the most time-consuming sections of the selected kernels on FPGA PL
resources. After kernels are properly implemented in PL, OmpSs@Cluster will be used to split and
parallelize the execution of the application in different nodes of the cluster. This architecture is designed
to meet real-time constraints, and to minimize hardware resources while keeping a low power consump-
tion target.

3.1 Software architecture
The SHL software application was designed and developed during months m12 and m22. It required to
analyze several open-source audio and video processing frameworks, libraries, toolkits and algorithms.
As such, the SHL software was developed with high-modularity in mind in order to simplify the testing,
profiling and optimization phases. The main blocks that characterize the developed SHL application are
divided into on-line blocks and off-line blocks. On-line blocks process data at run-time, so they need to
meet real timing constraints. On the other hand, off-line blocks generate the required models used in
machine learning algorithms, and do not suffer from time constraints.

• ON-LINE BLOCKS
o Input block: It gathers multimedia data from the network, demuxes and decodes the

audio and video data. The input block also manages the FIFOs required for storing data.
This block is based on the GStreamer open-source framework.

o Trigger block: It recognizes the event enabling the start of the identification phase.
o Speaker identification block: It processes the audio track recorded. Then it extracts

features from the input audio, and compares them with probabilistic models for speaker
identification (i.e. to grant/deny people’s access into their home premises).

o Iris recognition block: It processes all input frames, and locates the position of eyes
inside images. If the eyes were found, it then performs the extraction/generation of the
iris code of located eyes, and later compares it with the iris code of enrolled users.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 22 of 54

o Fusion block: It performs the biometric fusion of both the iris recognition and speaker
identification processes. It also defines the feedback action.

• OFF-LINE BLOCKS
o Speaker training block: It trains the target speaker models and organizes the underly-

ing file system.
o Iris training block: It trains the iris code of the target and organizes the file system.

As it has been pointed out, the on-line blocks characterizing the SHL application are mainly the speaker
identification block and the iris recognition block. These two blocks are presented in the next section.

3.1.1 Speaker identification block
The speaker identification block was developed during months m12-m16. It is based on ALIZÉ [16],
an open-source platform for speaker recognition developed in C++, and on SPRO [17], an open-source
speech signal-processing toolkit developed in C. Figure 9 shows the architecture of the speaker identi-
fication block. This block processes a chunk of audio captured from the input block. Then it decides if
inside the audio stream there is a human voice signal, and finally extracts the voice sample. If the voice
signal has a good quality, biometric features are extracted and then matched against the models of pre-
viously enrolled subjects. The result of these computations is used to identify whether the speaker is
authorized or not to perform the operation requested (i.e. basically, to deny/grant access to the home).

The main steps of the speaker identification block are:

• Extracting a set of features from input audio data.
• Identifying and normalizing the features that describe human voice.
• Matching the extracted features by relying on probabilistic models (Gaussian Mixture Model

GMM) against a database of pre-enrolled persons. This list of persons must be able to access
their home premises using biometric authentication. The probabilistic models of these individ-
uals are generated with the help of the off-line training block.

• Normalizing the results of the compare/matching operation using two different methods. The
output of the methods is used for determining if the processed audio matches an enrolled person.

Figure 9. Schema of the speaker identification blocks.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 23 of 54

3.1.2 Iris recognition block
During months m17-m20 the iris recognition block was designed and implemented. It is based on OSI-
RIS [18], an open-source iris recognition software and relies on OpenCV [19] , also an open-source
computer vision library. Figure 10 shows the architecture of the iris recognition block. From a high-
level perspective, this block is subdivided into two additional low-level blocks:

• A Video Processing Module (VPM)
• An Iris Recognition Module (IRM)

The VPM processes all the frames gathered from the input block. This module identifies and extracts
the coordinate of the Regions Of Interest (ROIs), which is the minimal box that incorporates an eye
inside the frame (i.e. Eye Region Detection block, and Eye Region Extraction block). ROIs are pro-
cessed to extract the metrics required for determining the image quality (i.e. Image Quality Assessment
block). Then metric values are tested against a threshold range in order to determine if the image quality
meets the minimum standards. Basically, this process checks if the regions enclosing eyes were captured
using correct light conditions and sharpness using previously fine-tuned thresholds. Finally, ROIs are
sent to the IRM. However, if they violate image quality thresholds, they are discarded (i.e. Image Se-
lection block).

The IRM processes the input ROI to generate the iris code of the previously found eyes. This module
is also used in the iris training block (off-line block) when computing the iris code for the access control
of subjects into their home. Inside the IRM, the inner and the output boundaries of iris are detected (i.e.
Segmentation block). Thereafter, the iris annulus is transformed into a size-invariant strip, following
Daugman’s rubber-sheet method. This new image is then filtered to extract iris features, and finally, an
iris code is generated as a selection of the complete set of features. To conclude the pipeline, the match-
ing phase consists in finding the distance from the processed iris codes to the codes saved in the enrolled
subjects database. The final match decision is based on meeting a minimum threshold distance.

Figure 10. Schema of the iris recognition blocks

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 24 of 54

3.1.3 Application workflow
The final integration of the multiple abovementioned blocks, and the application workflow code was
developed and extensively tested during months M20-M22. The obtained SHL software processes the
flow of the input audio and video streams in order to grant/deny access by performing matches against
the database of pre-enrolled subjects (Figure 11).

The recognition phase starts after the identification of a trigger event. After this event is captured, the
application starts to analyze in sequential mode multimedia streams. The audio track is processed only
after having recorded a voice sample of a pre-defined length. This sample was set to 3 seconds in the
proof of concept tests. On the other hand, video processing starts as soon as a frame is broadcasted.
Figure 12 shows an example featuring the input data processed over time by the SHL application.

However, this simplified representation does not show the latency required to process different video
frames, as this depends on the characteristics of the frame currently analyzed. The number of frames
required to recognize the iris of a given person is closely related to the degree of cooperation of the user
with the video capture system. If the end-user is not cooperative, it could become very difficult to cap-
ture pictures with the adequate quality and angles for enclosing eye regions.

Figure 11. The SHL application workflow

Figure 12. Sequential approach for the SHL application

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 25 of 54

3.2 Performance target goal and initial baseline performance
The SHL application checks the user’s identity before enabling his/her command request to the smart
home system. In order to enable a natural interaction, this operation must be as fast as possible so it
cannot degrade or interrupt the smoothness of the user action flow.

The amount of time required for the end-user identification is strongly correlated to the degree of co-
operation the end-user has with the SHL system. Similarly, the quality of multimedia data recorded also
has an impact on the recognition latency. Therefore, the time required to process an audio sample and
a given frame is affected by these unpredictable issues. Table 2 presents the initial baseline performance
results. The input workloads used for the experiments were the following:

• An audio sample of 3 seconds (PCM format) with 16-bit depth and sampling rate of 16 KHz
• A video stream in Full-HD resolution (1920x1080) with ROIs of 260x260 pixels

The first three lines of Table 2 are related to the three main steps of the speaker identification process:

• Feature extraction (with the algorithm presented in next section)
• Voice activity detection and feature normalization
• Pattern matching recognition of the features with the target models (GMMs)

The last three lines of Table 2 are related to the processing time of an image with three different types
of complexity:

• In the first case, the image does not incorporate any ROIs, and the frame is discarded after the
VPM process. The process time includes VPM processing time latencies but not IRM pro-
cessing time latencies.

• In the second case, the image incorporates a single ROI. The processing time includes VPM
and IRM processing time latencies.

• In the third case, the image incorporates two ROIs, so processing time includes VPM and two
IRM processing time latencies.

All the measures presented in Table 2 were obtained after averaging the latencies of 10 executions of
the final SHL application. All benchmarks were performed on the AXIOM Evaluation Platform (AEP)
(cf. D7.1, D7.2) equipped with the Xilinx-Zynq7000 SoC. The application was compiled with g++
(version 4.8.2), and enabling the –O2 compilation flag.

Table 2. Execution time of the SHL scenario on the AEP.

Operation Execution time
Feature extraction in a 3-seconds audio sample 0.2 sec
Energy detection and normalization 0.15 sec
Compute speaker pattern matching (with 9 GMMs) 0.67 sec
Process a frame without ROIs 0.27 sec
Process a frame with 1 ROI 3.7 sec
Process a frame with 2 ROIs 7 sec

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 26 of 54

On the original AXIOM proposal, it was mentioned that the video decoding process must be imple-
mented using a third-party IP core on the FPGA reconfigurable logic. As such, the implementation of
the interconnection of the video decoder with chip memory and ARM cores requires a close collabora-
tion between SECO and VIMAR partners.

The proposal was written with the hypothesis that it was feasible to decompress H.264 video streams
on the Xilinx Zynq-7000 SoC. As it is already known, this SoC does not include an on-die hardware
video decoder. Additionally, H.264 software video decoding on the ARM A9 cores yields a very low
performance, and it is thus unable to sustain the required frame rates for real-time applications. This
fact has been independently confirmed by both VIMAR and HERTA partners with initial tests con-
ducted on the ARM-A9 cores of the Zynq-7000 platform.

However, the recently released Xilinx Zynq UltraScale+ SoC was finally selected for the first AXIOM
prototype board. This change in the original board specifications had an impact on the initial hypothesis
and project’s planning efforts. The Xilinx Zynq UltraScale+ SoC includes a quad-core ARM Cortex-
A53 clocked up to 1.5 GHz, and its EV family includes an on-die H.264 / HEVC (H.265) high-perfor-
mance video decoding engine. For this reason, VIMAR and SECO decided to cancel the planned pur-
chase of a third-party H.264 IP video decoder block, and the corresponding development of the logic
within the FPGA to manage it. The final decision was also motivated by considering this latter approach
a very uncompetitive solution for the market. The first prototype of the AXIOM board is based on the
EG device family, which do not integrate the video decoder. The EV family was still not in production
on silicon at good yields, and thus was not available for the first board prototype. For these reasons, the
initial prototypes of both SHL and SVS applications running on the AXIOM board will perform soft-
ware video decoding on CPUs.

3.3 Optimization process using the OmpSs programming model
On deliverable D3.1, it was hypothesized that the SHL application implemented in WP3 would rely
mainly on three high-level kernels. These kernels are summarized again in Table 3. The first two ker-
nels are related to audio processing, and the latest one to video processing. All these benchmarks are
related to machine learning workloads.

Table 3. Proposed kernels representing the SHL scenario workloads.

Kernel Name Description

Voice_Activity_Detector Algorithm to label speech frames

Speaker_Recognition Pattern matching for speaker identification

Iris_Recognition Pattern matching for iris recognition

At the time when the deliverable D3.1 was written, the information on these algorithms was limited.
The initial exploration and the development of the SHL solution showed that the iris recognition task
required a higher workload than the speaker recognition task. More efforts to speeding up video pro-
cessing while reducing them on the optimization of the audio processing while be carried out in the next
task T3.3 while testing for user experience.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 27 of 54

The benchmarks that were studied are included below:

• The Voice activity detection (VAD) task, in which the focus is feature extraction algorithms,
(widely used in the speech processing application).

• The Anisotropic smoothing task, which is a very time-consuming process when performing the
segmentation steps of the iris recognition blocks. Additionally, this task is also used to filter the
input image before finding the inner and output boundaries of the iris ring.

• The Iris recognition task, which is the main process conducted in the Iris recognition module.
This task includes a part of the ROIs selection and all the processing of these.

3.4 Experimental setup
The results presented in next sections were obtained by compiling the SHL modules with the GCC/g++
compiler version 4.8.2, Mercurium compiler version 2.0.0, and Nanox++ run-time library version 0.12a.
The optimization level used by the compilers was set to -O2 for all benchmarks. OmpSs directives were
added to the code to exploit the underlying SMP resources of the AEP.

These results are basically the average of 10 executions on the AEP. Additionally, they show the speed
up between the original code, and sequential/parallel annotated code compiled and managed by OmpSs.

The code featuring OmpSs annotations was executed on the AEP by setting up SMP resources with the
NX_SMP_WORKERS variable. The exploration was done with 1 or 2 worker threads, as these are the
number of SMP resources available in the Xilinx- Zynq7000 SoC (ARM Cortex-A9). The number of
worker threads were not set to more than 2 to avoid overload and performance degradation.

For a more detailed analysis, traces were recorded using the Extrae library version 3.4.1, which enables
code instrumentation. Additionally, the traces were visualized with BSC’s Paraver tool. These tools
were used to analyze parallel code and several screenshots are shown during the text to prove its use-
fulness.

3.5 Feature extraction module
The feature extraction in speaker identification and in speech recognition consists in transforming the
speech signal into a set of feature vectors. The aim of this transformation is to obtain a new representa-
tion that is more compact, less redundant, and more suitable for a statistical modelling and a calculation
of a distance or any other kind of score. The features representation (or speech parameterizations) used
in the speaker identification block is a cepstral representation of the speech. Figure 13 shows a modular
representation of the algorithms used in the SHL application. The code of this module was extracted
using the SPro toolkit. SPro is an open-source speech signal-processing toolkit which provides runtime
commands implementing the standard feature extraction algorithms for speech and speaker recognition
applications and a C library to implement new algorithms [17].

Figure 13. Pipeline architecture of the Cepstrum analysis algorithm.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 28 of 54

The SPro toolkit code related to the cepstrum analysis is included in the sfbcep function. Such func-
tion is written to implement a sequential code and it does not take advantage of the heterogeneity and
the multicore architectures of the AXIOM system.

The exploration done on this module has defined which tasks of the algorithm can run concurrently and
introduce the OmpSs directives to take advantage of the multicore architecture and the FPGA resources.

The exploration results have revealed the possibility to process windows of 20 ms of input audio data
in parallel.

To process the input data in parallel, the SPro sfbcep code has been slightly modified. The two main
changes are:

1) Convert a set of global variables into local variables;
2) Modify the architecture of the application to extract in parallel the input audio windows from

the FIFO input and to write in parallel the output feature vectors on to the FIFO output. The
FIFO input and the output are used from the original code to read/write data from/to files.

Figure 14 shows SPro sfbcep’s architecture with the input and output FIFOs represented with “is”
and “os” in the figure. Figure 15 shows the new architectures that enable parallel access to data: the
input and the output data are saved on two vectors (buffArray[] and cArray[]). The green lines
in Figure 15 indicates the tasks that can be created with the OmpSs directives, obtaining parallel pro-
cessing. The pseudocode of the feature extraction function with the OmpSs annotation is presented in
the Appendix.

Figure 14. The original sfbcep sequential program.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 29 of 54

Figure 15. The proposed sfbcep parallel program.

3.5.1 Trace of the task execution and obtained performance results
Figure 16 shows the trace of the feature extraction module processed with two worker threads. The two
horizontal rows of the graph are the threads running the OmpSs tasks. The different colors mean differ-
ent thread states along the execution time of the application. The red blocks show the main task, there-
fore the execution time consumed for the instructions outside the OmpSs pragma on the pseudocode.

Figure 16. Paraver trace of the sfbcep program using 2 threads of the AEP.

The magenta blocks show the OmpSs tasks, the execution time consumed on the instructions inside the
OmpSs pragma, and on which worker threads the tasks are processed. The yellow lines show the sched-
uling operation of the tasks. By the yellow lines is possible to see where the buffArray[] vectors
are created and scheduled and where the taskwait pragma are set.

Table 4 shows the execution time of the feature extraction module on the AEP. The input data processed
are three audio samples with different duration. The audio format is uncompressed PCM audio with bit
depth of 16bits and sample rate of 16 KHz.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 30 of 54

Table 4. Execution times of the feature extraction task on the AEP.

Input
audio
[sec]

Execution
time without

OmpSs
pragma [sec]

Number
of

OmpSs
tasks

1 worker thread 2 worker thread
Execution time with

OmpSs@SMP
[sec]

speedup Execution time with
OmpSs@SMP

[sec]

speedup

3 0.18 299 0.19 0.9x 0.12 1.5x
30 1.8 2999 1.9 0.9x 1.01 1.7x

60 3.6 5999 3.8 0.9x 2 1.8x

Speedup smaller than 1x (i.e., a slowdown) appears in all the cases on which the application enriched
with the OmpSs directives uses only 1 worker thread. This expected result is attributed to the inability
to exploit parallelism with 1 worker only and the overhead is due to the creation and synchronization
of tasks that is not present in the sequential execution. Speedup up to 1.8x is gained when parallelism
is exploited with 2 worker threads. In this scenario, tasks are processed concurrently on the two SMP
resources.

A further increase of the speedup is expected on the final AXIOM board, in which four ARM cores are
present, and parallelism of tasks have further opportunities for exploiting the increase in the core count.
Task offloading to the FPGA PL using OmpSs@FPGA could also reduce the execution time consider-
ably.

Figure 17. Profiling of the feature extraction module. The profile was done on the AEP using the operf and the opreport
tools.

20%

16%

10%
7%5%4%

3%
3%

3%
3%

2%
2%
2%
2%2%2%2%2%1%1%1%1% 8%

Profiling of the feature extraction module
_fft
cosl
__sqrt_finite
filter_bank
fesetenv@@GLIBC_2.4
dct_init
feraiseexcept
do_cos.isra.0
/no-vmlinux
do_sin.isra.2
__dubsin
set_sig_win
fft
fesetround
fft_init
get_next_sig_frame
dct
feholdexcept
sig_normalize
_brx
sig_weight
getsample
functions that contribute <1%

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 31 of 54

Profiling information of the feature extraction module depicted in Figure 17 shows that the Fast Fourier
Transform (FFT) is a very time-consuming part of the application. Moreover, the pipeline structure of
this algorithm pushes our interest to try to offload the algorithm as much as possible to the FPGA PL
resources. This mapping operation to FPGA resources requires to define data formats and internal op-
erations in a suitable manner to enable a correct and efficient synthesis of the algorithms. This explora-
tion is carried out in collaboration with BSC’s researchers and leverages OmpSs@FPGA and Xilinx
Vivado HLS for automating such task.

The feature extraction module was also used to explore the possibility to parallelize with OmpSs anno-
tations the GStreamer open-source project, which is a popular framework to handle multimedia streams.
During last year, VIMAR in close collaboration with BSC explored the possibility to speed up a
GStreamer plug-in using both OmpSs@SMP and OmpSs@FPGA targets. This study proved the feasi-
bility of using the Nanox++ runtime system to manage threads created within the GStreamer framework
using OmpSs. These results were presented at the GStreamer Conference 2016 [20] in Berlin together
with the AXIOM project and the OmpSs programming model.

3.6 Anisotropic smoothing module
The Anisotropic Smoothing module is an image denoising technique that is aimed to preserve the edges
of images while smoothing regions of uniform intensity. This type of filtering is usually used as a pre-
processing stage of segmentation algorithms. As such, the Anisotropic Smoothing task is a very time-
consuming workload required for the segmentation steps of iris recognition blocks. This task aims at
filtering the ROIs recognition in frames in order to retrieve the iris contours. ROIs are filtered several
times to retrieve precise contours and coarse contours that improve the accuracy of the normalization
circles. Figure 18 shows an example of this filter.

Figure 18. Example of execution of the anisotropic smoothing module. The original sample image is shown on the left side;
the processed image is shown on the right side.

The sample was processed with the anisotropic smoothing task with 100 internal iterations.

The original code of the anisotropic smoothing is based on the OSIRIS framework [18], which is de-
veloped in C++ and available in the AXIOM project GIT server (cf. D7.2). A minimal C++ program
based on OpenCV framework [19] was developed with the purpose of obtaining a toolset for testing the
module in several experiments while exploring level of parallelism in algorithms. The source code of

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 32 of 54

the module and the toolset were shared with AXIOM partners to guarantee the reproducibility of ex-
periments.

The initial analysis of these algorithms showed the possibility of defining several tasks during image
processing. Basically, these algorithms consist of a loop with m iterations in which all image pixels are
processed in two steps. In the first step, only even pixels are processed, while in the second phase odd
pixels are processed. Pixel values modified in the two steps are defined by reading the neighbouring
pixels inside a 3x3 kernel, as shown in Figure 19. Image pixel are processed using two insert loops that
read and write pixels by rows and by columns.

The underlying structure of the algorithm enables defining several tasks for processing pixels imple-
menting different levels of granularity. For instance, granularity of tasks could be 3x3 pixels at kernel
level, at row level or at image chunks level. An important constraint is that all even pixels must be
processed before odd pixels and vice versa.

Figure 19. Section of the image during the processing of even and odd pixels.

We explored several strategies when adding OmpSs annotations in the source code:

• Create a task for each 3x3 kernel of pixels. If we do not consider the boundary exceptions, this
strategy creates a number of tasks equal to the number of pixels for each iteration;

• Create a task for each row of the image. If we do not consider the boundary exceptions, this
strategy relies on a number of tasks equal to the double of the number of rows of the image for
each iteration, one task for odd pixels of a row and one for even pixels of the row;

• Create a task for processing half image pixels. This strategy creates 4 tasks for each iteration,
two tasks for odd pixels and two for even pixels;

The design space exploration done for this module showed that the first proposed strategy yielded a
number of tasks with low computational footprint. Moreover, performance using the SMP resources in
the AEP was dramatically degraded when compared to the compilation without OmpSs directives.

The second strategy gave better results when pixels of a row were above of a given threshold. In fact,
if the number of pixels processed are too low, the overhead introduced by task creation decreases per-
formance. For this reason, the third strategy is the best one in cases in which the number of pixels in a

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 33 of 54

given row of an image are too few. The best solution strongly depends on the size of the image to be
processed. The final code will take into account these results in order to maximize performance.

The pseudocode of the anisotropic smoothing function parallelized with OmpSs annotations is shown
in the Appendix.

3.6.1 Trace of the task execution and obtained performance results

Figure 20 shows a chunk of the trace execution of the anisotropic smoothing function with two different
granularities. The upper graph and the lower graph show two different tests. Horizontal axes of the two
graphs are fixed to the same timescale. Therefore, the two graphs show the same time duration. In the
trace of the upper part, granularity of tasks is fixed to the row level, whereas in the lower part granularity
is fixed to half image level. Horizontal rows of the graph correspond to threads running OmpSs tasks.
On the other hand, different colors mean different thread states along the execution time of the applica-
tion.

Figure 20. Paraver trace of the anisotropic smoothing task with two different granularities with the same timescale in hori-
zontal axes. The upper graph shows execution of the task with the granularity fixed to row level; the lower graph shows the

execution of the task with granularity of half image level.

Table 5 shows the execution time of the anisotropic smoothing module on the AEP. The input data sets
for the experiments were two images: ROIs of 260x260 pixels obtained from the IRM, and a Full HD
frame. The number of iterations m was fixed to 100. All internal calculations were performed using 32-

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 34 of 54

bit floating point precision. Figure 21 shows the obtained speedups with several number of pixels pro-
cessed within tasks.

Table 5. Execution time of the anisotropic smoothing task on the AEP.

Input frame Execution
time with-

out OmpSs
pragma

[sec]

Number
of

OmpSs
tasks

Granular-
ity

Number
of pixels
for tasks

1 worker thread 2 worker thread
Execution
time with

Om-
pSs@SMP

[sec]

speedup Execution time
with Om-

pSs@SMP
[sec]

speedup

260x260 1.479 51600 half
image

258 2.401 0.6x 1.343 1.1x

260x260 1.479 400 row 33540 1.519 0.9x 0.833 1.8x
1920x1080 47.192 215600 row 1918 52.546 0.8x 26.702 1.8x
1920x1080 47.192 400 half

image
1035720 47.324 0.9x 33.142 1.4x

Also in this module, a further increase of performance is expected to be achieved on the final AXIOM
board, in which four ARM cores are present, and the parallel execution of tasks could efficiently exploit
these additional resources.

Figure 21. Speedup of the anisotropic smoothing task on the AEP with 1 and 2 worker threads. Results are shown with sev-
eral task granularities, fixed by the number of pixels processed on each task.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 10 100 1000 10000 100000 1000000 10000000

Sp
ee

du
p

Pixels processed in each task [log scale]

Speedup of anisotropic smoothing with
OmpSs@SMP

1 worker thread 2 worker thread

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 35 of 54

3.7 Iris recognition module
The Iris recognition module is responsible for analyzing ROIs selected in the VPM of iris recognition
blocks. As such, this module incorporates several processing steps presented in Section 3.1.2 related to
the Iris recognition block. The original code of this module comes from the OSIRIS toolkit, and it is
available on the AXIOM project GIT server. The module uses a large number of functions included in
the OpenCV library [19]. Also, the OSIRIS code was modified and customized in order to be included
it in the SHL application.

The analysis done on the SHL application shows that the data of each ROI extracted from the VPM
module is independent, and can be processed using different tasks. The OmpSs programming model
can transform the sequential execution of the video frames into tasks that can be scheduled by the
Nanox++ runtime system by leveraging unused resources of the underlying architecture. Since these
tasks feature a high CPU consumption, they are good candidates for both OmpSs@SMP and Om-
pSs@Cluster, and benefit from coarse-grained parallelism.

Figure 22 shows the three main operations involved in frame processing: location and extraction of the
ROIs (which are depicted using yellow blocks), and the processing of the two ROIs (operations indi-
cated with the green blocks). This figure also shows both sequential and parallel solutions. The pseu-
docode of the iris recognition task with OmpSs annotations is included in the Appendix.

Figure 22. Execution diagram of the Iris recognition task in the sequential and parallel solutions.

3.7.1 Trace of the task execution and obtained performance results
The execution trace of this module is shown in Figure 23. Red boxes represent operations to locate and
extract ROIs, the dark red and magenta boxes represent tasks used to process the ROIs that are sched-
uled into unused SMP resources.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 36 of 54

Figure 23. Paraver trace of the iris recognition task using 2 threads of the AXIOM Evaluation Platform.

Table 6 shows the execution time of the iris recognition module on the AEP. The input data used for
the experiments were two videos: one with 8 frames, and another one with 98 frames. Both videos were
encoded at Full HD resolution, and contained two ROIs with size of 260x260 pixels.

Table 6. Execution time of the iris recognition task on the AEP.

Number of
frame

Execution time
without OmpSs

pragma [sec]

Number of
OmpSs
tasks

1 worker thread 2 worker thread

Execution time
with OmpSs@SMP

[sec]
speedup

Execution time
with Om-

pSs@SMP
[sec]

speedup

8 52.3 16 52.3 1x 38 1.37x
98 596.5 196 590 1x 421 1.41x

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 37 of 54

Figure 24. Profiling of the iris recognition kernel. The profile was done in the AEP using the operf and the opreport tools.

Also in this module, a further increase of the performance is expected when porting the code to the final
AXIOM board. Additionally, the code also exposes enough parallelism to be offloaded to a cluster built
from several AXIOM boards.

Unfortunately, the high workload and complexity of the code do not enable to efficiently map tasks of
this module into the FPGA PL resources. However, the iris recognition module incorporates eye seg-
mentation and so the anisotropic smoothing module. In Figure 24, profiling information of the iris
recognition module shows the anisotropic function is the most resource-intensive part of iris recognition
thus making it a good candidate for FPGA offloading. Therefore, the iris recognition module could
create tasks that may take advantage of the underlying resources available in the nodes of the AXIOM
cluster.

Finally, the whole application will be again reviewed in the future for further parallelization optimiza-
tions on FPGA PL resources. For instance, operations such as max and min functions represent about
10% of the execution time. During the coming months, we will explore the possibility of offloading
other parts of the code in order to further increase the speedup.

24%

11%

9%
9%6%

6%
6%

5%
5%

5%
4%

3%3%2%2%

Profiling of the iris recognition module
osiris::OsiProcessings::processAnisotropicSmoothing()
cv::MorphFilter< >::operator()
cv::CvtColorLoop_Invoker< >::operator()
/usr/lib/arm-linux-
gnueabihf/neon/vfp/libswscale.so.2.1.1
cv::copyMask8u()
__memcpy_neon
cv::sum8u()
void cv::DFT<>()
float const& std::min< >()
float const& std::max< >()
cv::xor8u()
void cv::DFT< >()

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 38 of 54

4 App/Service Prototyping
This activity aims at producing interactive prototypes of Apps/Services, based on the challenges ad-
dressed in the two case studies (Smart Home Living and Smart Video Surveillance), for envisioning
solutions with an appealing user experience.

4.1 Rapid prototyping tools for Cyber Physical Systems
Prototyping massively interconnected objects, devices, and sensors raises equally massive challenges
regarding the resources that will allow designers to manage the complexity of such systems, and to
exploit the opportunities such technologies will open up.

An unavoidable challenge in designing IoT solutions is the need of authoring environments and archi-
tectural infrastructures for supporting end-user programming and promoting tinkering. Such authoring
environments should enable the creation of domain-specific applications, supporting designer to con-
nect IoT appliances and to specify behaviors and the presentation of information in a highly-personal-
ized manner, which should be tailored to the end-user and its context of use [21].

Designing for the CPSs is more complex than designing for regular web services or applications. Now-
adays, by relying on mature and consolidated design patterns and graphical frameworks, it is relatively
easy to design beautiful user interfaces. However, users could still have a poor experience of the IoT
products as a whole. Designing a great connected product requires a different approach to user experi-
ence [22].

Moreover, in AXIOM the challenges addressed by the two case studies (Smart Home Living and Smart
Video Surveillance) rest on machine learning solutions. More into the detail, the Smart Home Living
scenario is related to a recent domain named Interactive Machine Learning [23]; the Smart Video Sur-
veillance uses neural networks (CNN) in order to produce accurate results. Furthermore, the Smart
Video Surveillance and the Smart Home Living Scenarios are envisioned to merge in Marketing or
Edutainment scenarios, either of them based on Interactive Machine Learning.

In respect to this, we must acknowledge that today there are no authoring tools for rapid prototyping of
Apps or Services based on Interactive Machine Learning.

4.2 Interactive machine learning
Interactive Machine Learning is a new field, which lives at the intersection of User Experience and
Machine Learning research. Human application of machine learning algorithms to real-world problems
requires embedding the algorithms in software or hardware tools of some sort. Even though the form
and the usability of these tools impact the feasibility and the efficacy of applied machine learning work,
research at the intersection of HCI and machine learning is still a very young area. Notwithstanding
this, as recently remarked [24], almost anyone wondering how to incorporate AI into their own business,
creative tool, software product or design practice  -  would be better off studying this field than maybe
any other part of the AI landscape.

Machine learning is a powerful tool for transforming data into computational models that can power up
user-facing applications. However, potential users of such applications have limited involvement in the
process of developing them.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 39 of 54

The intricacies of applying machine learning techniques to everyday problems have largely restricted
their use to skilled practitioners. In the traditional applied machine learning workflow, these practition-
ers collect data, select features to represent the data, pre-process and transform the data, choose a rep-
resentation and learning algorithm to construct the model, tune parameters of the algorithm, and finally
assess the quality of the resulting model. This assessment often leads to further iterations on many of
the previous steps. Typically, any end-user involvement in this process is mediated by the practitioners
and is limited to providing data, answering domain-related questions, or giving feedback about the
learned model. This results in a design process with lengthy and asynchronous iterations, which limits
the end-users’ ability to impact on the resulting models.

Instead, in Interactive machine learning, learning cycles involve more rapid, focused, and incremental
model updates than in the traditional machine learning process (see Figure 25). These properties enable
everyday users to interactively explore the model space through trial-and-error and drive the system
towards an intended behavior, reducing the need for supervision by practitioners. Consequently, inter-
active machine learning can empower end-users to create machine learning-based systems for their own
needs and purposes. However, enabling effective end-user interaction with interactive machine learning
introduces new challenges that require a better understanding of end-user capabilities, behaviors, needs
and, first of all, rapid prototyping tools for jointly exploring the design space.

Figure 25. In machine learning, people iteratively supply information to a learning system and then observe and interpret
the outputs of the system to inform subsequent iterations. In interactive machine learning, these iterations are more focused,
frequent and incremental than traditional machine learning. The tighter interaction between users and learning systems in

interactive machine learning necessitates an increased focus on studying the user’s involvement in the process.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 40 of 54

Prototyping tools should focus on supporting human-computer interaction in the context of creating
machine learning systems, where users are engaged in several tasks, including choosing and training a
learning algorithm, evaluating and comparing models, and supplying training data. The scope of rele-
vant users includes researchers applying machine learning techniques to data analysis in an application
domain of their expertise, developers of user interfaces containing machine learning components, and
end-users of software tools that directly engage users in controlling some aspects of a machine learning
system, such as providing training data and evaluating trained models.

Therefore, we decided to design a flexible and easy-to-integrate technology for prototyping CPS/IoT
solutions based on interactive Machine Learning. To the best of our knowledge this is the first ever
prototyping platform for such domain.

4.3 UAPPI
In the design of our prototyping environment, we found that the best opportunities were offered by App
Inventor, an open source Web IDE. App Inventor for Android is a visual programming platform for
creating Android applications. It was developed at Google Labs by an MIT team led by Hal Abelson
[25]. Developing apps in App Inventor does not require writing classic source code. The look and be-
havior of the app is developed “visually”, using a series of building blocks for each intended component.
The visual nature of its language reduces the syntax problems common among programming beginners
first starting to design an app.

A key feature of the programming environment is live programming. Code changes are immediately
and continually reflected in a constantly running program. Liveness makes program development more
interactive by incorporating the effects of program changes more quickly than if they are incorporated
in the traditional edit-compile-run-test approach. The other key feature is Event-driven programming.

Our extension of App Inventor, UAPPI, gives novices the tools to develop applications by providing
must-have functionalities like GUI, network access and storage on databases and by incorporating the
popular Arduino sensors and actuators. UAPPI integrates two worlds, Android and Arduino, by mean
of a powerful and easy to learn visual programming platform. UAPPI can be understood as an extension
of App Inventor for the Cyber-Physical world.

UAPPI uses a Java web server to expose the web-based IDE user interface, which allows Interaction
Designers to prototype and develop applications for the AXIOM scenarios. The projects are saved as
soon as the user works, stored in the UAPPI server itself, and can also be exported and reimported for
backup or sharing purposes.

Live programming is implemented by means of a special app running on the UDOO board, the UAPPI
Companion. Although final apps can ultimately be compiled to produce ordinary apk files, browser
interaction during live development is accomplished by the Companion runtime, which serves as an
interpreter for the UAPPI code. The UAPPI Companion is an app which embeds all the UAPPI com-
ponents (GUI elements, storage options, libraries, etc.) and receives the UAPPI code from the develop-
ment computer connected to the IDE (see Figure 26). The UAPPI code arranges graphical elements on
the screen, sets variables and properties, defines procedures and event handlers.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 41 of 54

Figure 26. An Interaction Designer can develop prototypes using UAPPI running on his computer’s browser, and later run
them on the UDOO board for testing.

UAPPI has been developed on the UDOO board since it provides the required hardware to mock the
AXIOM scenarios: Full HD camera compatibility, microphone input, and an Arduino interface. This is
not intended as a replacement of the AXIOM platform, which provides a different architecture: accel-
erated-computing on a cluster instead of low-computing on a single node, Linux instead of Android,
Arduino soft-core IP instead of an ASIC chip, etc. The UAPPI comes into play for design purposes
only. The final applications and services derived from the envisioned scenarios will be implemented on
the final AXIOM architecture at a later stage in the project, so this tools will easy such process.

Table 7. Arduino components available in UAPPI with the related implemented features.

UAPPI Component Features provided

UdooQuad Low-level Arduino API for custom analog and digital logic
(pinMode, digitalWrite, digitalRead, analog-
Write, analogRead, delay, map, attachInterrupt,
...)

UdooProximitySensor HC-SR04 Ultrasonic proximity sensor (5-200cm) compatibility

UdooThermoSensor DHT-11 and DHT-22 temperature and humidity sensors compatibility

UdooColorSensor TCS34725 RGB color sensor compatibility

UdooServo PWM-controlled servo motors compatibility

4.3.1 Interaction with Arduino
Easy interfacing with the Cyber-Physical world is a key objective of the AXIOM project. To achieve
this, the board integrates an Arduino. Partner SECO is developing a soft-core Arduino IP in T6.4, and
the Arduino UNO pinout will guarantee support for a plenty of pluggable expansion board (so-called
“shields”).

Arduino compatibility is very useful during the prototyping phase. It allows to easily connect sensors
and actuators, and even mock real-world objects. For instance, the video door entry system of the Smart
Home Living scenario can control a door lock implemented with servo motors in minutes.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 42 of 54

In UAPPI, we have developed several components to control the Arduino microcontroller of the UDOO
board. The preliminary Arduino compatibility in UAPPI is summarized in Table 7.

4.3.2 Prototyping interactions with machine learning
The first ML class of algorithm considered for prototyping interactions is Support Vector Machine
(SVM). Support Vector Machine [26] is a machine learning technique used in data classification prob-
lems. Its simplicity of use, robustness and ability to generalize, has built a reputation making it one of
the most used machine learning algorithms. It is also used by partner HERTA in the currently deployed
version of their BioMarketing software product [27].

The SVM is trained by providing it some data samples. Each data sample is composed of a features
vector and a tag. When some examples are provided, the machine computes a mapping function able to
classify unlabeled feature vectors, never seen during the training phase.

UAPPI provides a component, UdooSvm, which allow both the training phase and the classification
using libsvm [28] for the underlying implementation. For the separation of concerns principle, this
component is not aware of what the feature vectors represents or how they can be generated. Feature
vectors can be generated by other blocks, specific to the required task, like analyzing a video or audio
frame or reading data from some Arduino digital and/or analogic pins.

Google Vision [29] is a framework for finding objects in photos and video using real-time on-device
vision technology.

The mobile face API [30] finds human faces in photos, tracks positions of facial landmarks (eyes, nose,
and mouth) and provides information about the state of facial features -- are the subject's eyes open?
Are they smiling?

UAPPI integrates this library in a component, UdooVision. Using an USB camera, it can detect the
prominent face in the frame. The component exposes values between 0 and 1 proportional to how much
the eyes are open and how much the person is smiling (0 means closed eyes / no smile; 1 means eyes
fully opened / full smile).

4.4 Example
Using this prototyping environment, in a few minutes it is possible to create a smart lamp. Winking the
left eye, the lamp enters in “programming mode”, where it powers up an RGB LED strip proportionally
to the smile. Winking again exits the programming mode.

The programming blocks for this lamp are shown in Figure 27 depicted below.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 43 of 54

Figure 27. UAPPI blocks for a lamp that can be powered up smiling in front a camera.

5 Building a data set for prototyping exploration
In order to facilitate the setting up of the selected use-case scenarios, we started to collect data that is
going to be used for building machine learning models (e.g. Smart Home or Video Surveillance use-
cases). Additionally, it could be also used not only for improving both HERTA and VIMAR’s product
portfolio but also for enabling research to third-party institutions.

5.1 Photo archive for facial recognition system
The first data set includes faces of random people that agreed to collaborate with the AXIOM project.
These faces are needed for training and fine-tuning the deep neural networks used for demographic
estimation, and related to HERTA’s WP3 smart marketing use-case scenario. In order to generate such
data set, we captured pictures of random people by following the protocol defined in the Ethics Screen-
ing Report. Therefore, collected data will be anonymized, and later distributed on public repositories
using a permissive license: OpenAIRE [31] (funded by the EC), and Zenodo [32] (funded by both
CERN and the EC).

Collected face images included various individuals from different backgrounds:

• Different ages (from 8 years old to 87);

• Different gender (male, female);

• Different ethnicities: “white”, “asian” and “black” (Indian people and similar ethnicities were
tagged as “white”);

• Occlusions (glasses, sunglasses, hat/cap, scarf, hand, smoking);

• Changing illumination conditions;

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 44 of 54

Initially, we planned to capture images of at least 100 persons but thanks to the agreement of people to
participate in the experiment, we decided to extend this goal to 150 individuals to better refine the
system. As it is known, state-of-the-art neural network models trained with deep learning techniques
yield higher accuracy as the amount of training images is increased.

Regarding the resolution used for capturing pictures, we selected the maximum possible resolution al-
lowed by the camera device (i.e. 4K resolution). This process was automated by means of the software
application developed by HERTA (see Section 2.3). The application’s user interface features buttons,
automatically manage persistence, and handle I/O to speed up the annotation/tagging of demographic
characteristics (age, ethnicity and coordinates/location) of subjects.

For each person stored in the AXIOM database, we captured at least 25 pictures:

• A single very high-quality frontal image;

• Several images, with small rotations: 6 x top, 6 x bottom, 6 x left, 6 x right (up to 30 degrees);

• Dynamic lighting conditions: for both frontal and each rotated pose, we captured pictures using
normal and minimal lighting. Some pictures were captured by turning the lights off or with
poor illumination conditions (i.e. by using differently positioned lamps, directional lights, and
colored lights);

• Faces were partially occluded. In some cases, we invited the subject to wear glasses (different
models/design/trademarks), sunglasses, hats/caps, scarfs, moustache/beard. We paid attention
to not use always the same glasses/sunglasses or hats. Otherwise, the obtained neural network
would be prone to overfitting and could not learn well how to generalize features.

In addition to that, we captured several HD/4K videos of groups of people moving around. Generally,
we invited 3-6 persons to appear on a single frame. These videos were recorded with the purpose of
being used later as a validation data set for evaluating the accuracy of the trained neural network models.
Also, they are useful for testing and optimizing the kernel’s source code on the FPGA without constantly
relying on an external camera pointing to people.

Finally, each picture was annotated using both a unique anonymous ID assigned to each participant and
the number of frame within the video sequence. The subject ID will prove useful to detect possible
errors in certain annotated person-dependent cues (such as gender or ethnicity).

5.2 Audio recordings
The second data set concerned the recording of audio samples, collected from the same people involved
in the first data set. These audio samples are required for the training and testing of VIMAR’s algo-
rithms implemented for the SHL scenario. The data was collected during two sessions.

FIRST SESSION

The recording speaker was settled to capture:

• Gender (female/male)

• Age (range of ages)

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 45 of 54

• Participant ID

• Time and date of the registration

The initial target was set to 100 speakers. In order to reach this ambitious goal, we selected participants
from a sample of students, researchers, professors, and their relatives.

For every speaker, the following information was recorded (16-bit, 16 KHz sample, Word/Impostor):

• Natural speech for 15 minutes (two times) for a total of 30 minutes’ sample;

• Three registrations of 5 minutes captured during different days;

The environment for the recording was a silent room with no background noise.

SECOND SESSION

The recording speaker was settled to capture people during their everyday work with these variables:

• A subject working alone using his/her PC workstation, mobile devices or papers;

• People working in a group;

• People talking by phone or having a Skype call;

• Events interfering with the ordinary activities: strange sound, people speaking loud or back-
ground noises.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 46 of 54

6 Extra achievements
In order to facilitate the implementation, porting and integration of the SVS and SHL scenarios devel-
oped by HERTA and VIMAR, following the protocol defined in the Ethics Screening Report, partner
UNISI took the responsibility of building the data sets required for training models for the facial demo-
graphic analysis and speaker identification algorithms.

UNISI shot pictures of random individual’s faces. These pictures are going to be used during month
m26 for retraining the facial analysis CNNs developed by HERTA so they can be publicly released and
meet the open access data policy.

The second set of data contains the recording of audio samples, collected from the same people involved
in the first data set, with the aim of training and validating the required models for the SHL scenario.

Further details are available in Section 5.

7 Confirmation of DoA objectives
PLANNED DELIVERED

DELIVERABLE: SCENARIOS REFINEMENT
• Scenarios refinement using the AX-

IOM CPS platform
Already delivered in D3.1

• Benchmark set definition Already delivered in D3.1
• Services/system integration and ap-

pealing user experience
Interactive prototypes production for the two
case studies is addressed in Section 4

DELIVERABLE: SCENARIOS PORTING
• Porting of the SVS Application to

the OmpSs Programming Model
Implementation steps and results are shown
in Section 2

• Porting of the SHL Application to
the OmpSs Programming Model

Implementation steps and results are shown
in Section 3

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 47 of 54

8 Conclusions
In this deliverable, we have detailed the design decisions taken when designing and coding the required
applications for the SVS and SHL case studies. Additionally, it also described the initial experiences
when parallelizing the most time-consuming kernels using the directives offered by the OmpSs pro-
gramming model. The initial performance results show that by relying on OmpSs directives, it is pos-
sible to achieve a reasonable speed up in sequential kernels with minimal efforts.

The SVS use case also involved the architectural design and training of two state-of-the-art convolu-
tional neural networks for estimating the age and gender of detected faces. It is expected that in order
to achieve good performance results when using the OmpSs@FPGA backend, it will be necessary to
perform low-level optimizations at the HLS level for enabling real-time performance of the convolu-
tional neural network inference engine. Significant efforts will be also needed for reducing the latency
of the LBP kernel to the maximum extent on the PL logic, as it currently requires roughly 500ms for
analyzing a picture with 24 simultaneous faces on the CPU cores of the Zynq-7000 SoC. In order to
meet the target of real-time performance, these combined figures must be reduced to significantly less
than 40 ms per frame.

Another task that also needs to be further explored is the H.264 decoding process. It is expected that
this task will be managed either by a third-party IP logic block or by a dedicated subset of the ARM
Cortex A53 cores that are available on the Ultrascale+ platform.

The experience obtained when studying the SHL scenario has led to combine several open source li-
braries to develop the required application. VIMAR’s work brought out that code parallelization re-
quires a deep understanding of the algorithms utilized, and also of the third-party code used for imple-
menting the needed libraries.

Algorithms that have not been implemented for parallel execution normally require some modification
to obtain good performance results before introducing OmpSs directives. One specific case is the feature
extraction module in which the architecture and some variables have been modified.

A detailed analysis of the granularity of the tasks created with OmpSs directives is needed in order to
gain increase performance, as it is shown on the obtained results of the anisotropic smoothing module.

BSC’s visualization tools have proved their high potentiality and productivity when carrying out this
type of analysis.

The introduction of OmpSs directives to create tasks with coarse-grained parallelism was a smart
choice, and succeeded in obtaining speed ups with minimal efforts. This was the case of the iris recog-
nition module, and LBP cascade evaluation kernel.

All the studies carried out in this deliverable did not involve the usage of FPGA PL resources. A pre-
liminary FPGA mapping study has just started in collaboration with BSC’s researchers. From our ex-
perience, it was immediately clear that in order to exploit those resources, an additional in-depth anal-
ysis and code modifications will be necessary. These initial unreported experiments have shown that a
non-careful naïve mapping leads to a rapid exhaustion of the available FPGA PL resources. In the com-
ing months, this activity will focus on studying mapping of tasks to the FPGA PL using OmpSs@FPGA.

Other publications of the project [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] are reported
in the reference list.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 48 of 54

References
[1] Qiu, Jiantao, et al. "Going deeper with embedded FPGA platform for convolutional neural network." Proceedings of the 2016 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. ACM, 2016.
[2] LibAv – Open source audio and video processing tools, https://libav.org/
[3] Schapire, Robert E., and Yoav Freund. Boosting: Foundations and algorithms. MIT press, 2012.
[4] NVIDIA Tesla P4 and P40 inferencing accelerators, http://www.nvidia.com/object/accelerate-inference.html
[5] Xilinx Kintex Ultrascale+, https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale-plus.html
[6] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
[7] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
[8] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition .

2016.

[9] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in neural information processing
systems. 2015.

[10] Jia, Yangqing, et al. "Caffe: Convolutional architecture for fast feature embedding." Proceedings of the 22nd ACM international conference on Multimedia.
ACM, 2014.

[11] Collobert, Ronan, Samy Bengio, and Johnny Mariéthoz. Torch: a modular machine learning software library. No. EPFL-REPORT-82802. Idiap, 2002.
[12] Abadi, Martín, et al. "TensorFlow: A system for large-scale machine learning." Proceedings of the 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI). Savannah, Georgia, USA. 2016.
[13] ATLAS – Automatically tuned linear algebra software, http://math-atlas.sourceforge.net/
[14] GEMM-lowp – A small self-contained low-precision GEMM library, https://github.com/google/gemmlowp
[15] Deep Learning with INT8 operations on Xilinx FPGAs, https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
[16] Alize, http://alize.univ-avignon.fr/
[17] SPro, https://www.irisa.fr/metiss/guig/spro/spro-4.0.1/spro.html
[18] Osiris, http://svnext.it-sudparis.eu/svnview2-eph/ref_syst/Iris_Osiris/
[19] OpenCV, http://opencv.org/
[20] GStreamer Conference 2016, https://gstreamer.freedesktop.org/conference/2016/
[21] Jenkins, Tom. "Designing the Things of the IoT" Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction.

ACM, 2015.
[22] Rowland, Claire, et al. Designing connected products: UX for the consumer Internet of Things. " O'Reilly Media, Inc.", 2015.
[23] Amershi, Saleema, Maya Cakmak, William Bradley Knox, and Todd Kulesza. "Power to the people: The role of humans in interactive machine learning."

AI Magazine 35, no. 4 (2014): 105-120.
[24] https://medium.com/@atduskgreg/power-to-the-people-how-one-unknown-group-of-researchers-holds-the-key-to-using-ai-to-solve-real-

cc9e75b1f334#.x394jvgx0
[25] Abelson H.: App Inventor for Android, https://research.googleblog.com/2009/07/appinventor-for-android.html
[26] Andrew, Alex M. "An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods by Nello Christianini and John Shawe-Taylor,

Cambridge University Press, Cambridge, 2000, xiii+ 189 pp., ISBN 0-521-78019-5 (Hbk,£ 27.50)." (2000): 687-689.
[27] BioMarketing – Herta Security, http://www.hertasecurity.com/en/products/biomarketing
[28] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-

-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
[29] Mobile Vision – Google Developers, https://developers.google.com/vision/
[30] Android com.google.android.gms.vision.face APIs, https://developers.google.com/android/reference/com/google/android/gms/vision/face/package-

summary
[31] Openaire, https://www.openaire.eu
[32] Zenodo, https://zenodo.org
[33] R. Giorgi, “Transactional memory on a dataflow architecture for accelerating Haskell,” WSEAS Trans. Computers, vol. 14, pp. 794–805, 2015.
[34] 2. Giorgi and A. Scionti, “A scalable thread scheduling co-processor based on data-flow principles,” ELSEVIER Future Generation Computer Systems,

vol. 53, pp. 100–108, July 2015.
[35] D. Theodoropoulos et al., “The AXIOM project (agile, extensible, fast I/O module),” in IEEE Proc. 15th Int.l Conf. on Embedded Computer Systems:

Architecture, MOdeling and Simulation, July 2015.
[36] R. Giorgi, "Scalable Embedded Systems: Towards the Convergence of High-Performance and Em-bedded Computing", Proc. 13th IEEE/IFIP Int.l Conf.

on Embedded and Ubiquitous Computing (EUC 2015), Oct. 2015.
[37] R. Giorgi, "Exploring Dataflow-based Thread Level Parallelism in Cyber-physical Systems", Proc. ACM Int.l Conf. on Computing Frontiers, New York,

NY, USA, 2016, pp. 6.
[38] A. Rizzo, G. Burresi, F. Montefoschi, M. Caporali, R. Giorgi, "Making IoT with UDOO", Interac-tion Design and Architecture(s), vol. 1, no. 30, Dec. 2016,

pp. 95-112.
[39] L. Verdoscia, R. Giorgi, "A Data-Flow Soft-Core Processor for Accelerating Scientific Calculation on FPGAs", Mathematical Problems in Engineering,

vol. 2016, no. 1, Apr. 2016, pp. 1-21.
[40] S. Mazumdar, E. Ayguade, N. Bettin, S. Bueno J. and Ermini, A. Filgueras, D. Jimenez-Gonzalez, C. Martinez, X. Martorell, F. Montefoschi, D. Oro, D.

Pnevmatikatos, A. Rizzo, D. Theodoropou-los, R. Giorgi, "AXIOM: A Hardware-Software Platform for Cyber Physical Systems", 2016 Eu-romicro Conf.
on Digital System Design (DSD), Aug 2016, pp. 539-546.

[41] R. Giorgi, N. Bettin, P. Gai, X. Martorell, A. Rizzo, "AXIOM: A Flexible Platform for the Smart Home", Springer Int.l Publishing, Cham, 2016, pp. 57-74.
[42] P. Burgio, C. Alvarez, E. Ayguade, A. Filgueras, D. Jimenez-Gonzalez, X. Martorell, N. Navarro, R. Giorgi, "Simulating next-generation cyber-physical

computing platforms", Ada User Journal, vol. 37, no. 1, Mar. 2016, pp. 59-63.
[43] Jimenez-Gonzalez, Daniel; Alvarez-Martinez, Carlos; Filgueras, Antonio; Martorell, Xavier; Langer, Jan; Noguera, Juanjo; Vissers, Kees, “Coarse-Grain

Performance Estimator for Heterogeneous Parallel Computing Architectures like Zynq All-Programmable SoC” (Journal Article) Second International
Workshop on FPGAs for Software Programmers FSP 2015, CoRR , 2015.

[44] R. Giorgi, S. Mazumdar, S. Viola, P. Gai, S. Garzarella, B. Morelli, D. Pnevmatikatos Dionisios and Theodoropoulos, C. Alvarez, E. Ayguade, J. Bueno,
D. Filgueras Antonio and Jimenez-Gonzalez, X. Martorell, "Modeling Multi-Board Communication in the AXIOM Cyber-Physical System", Ada User
Journal, vol. 37, no. 4, December 2016, pp. 228-235.

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 49 of 54

Appendix

SVS workloads

CNN inference
The C++ source code of the convolve operation is included below as a reference. The SGEMM opera-
tion is highlighted in bold. The auxiliary Im2Col function is a required transformation for implementing
convolutions using the SGEMM operation. Possible additional nonlinearity to be applied after SGEMM
is removed from the source code.

void dnn::Convolve(const dnn::Tensor& input, const dnn::Tensor& weights, const dnn::Tensor& bias, dnn::Padding padding,
 dnn::Stride stride, dnn::Nonlinearity nonlin, dnn::Tensor& output)
{
 assert(input.num_ == 1);

 // Prepare Toeplitz matrix (input with kernel deviations)
 dnn::Tensor col;
 Im2Col(input, dnn::Kernel(weights.width_, weights.height_), padding, stride, col);

 // Prepare output
 output = dnn::Tensor(col.width_, col.height_, weights.num_, 1);

 // Carry out convolution by simple matrix multiplication
 int spatial_dims = col.width_ * col.height_;
 int kernel_dims = weights.channels_ * weights.height_ * weights.width_;
 cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
 output.channels_, spatial_dims, kernel_dims,
 1.f, weights.values_.data(), kernel_dims,
 col.values_.data(), spatial_dims,
 0.f, output.values_.data(), spatial_dims);

 if (nonlin == dnn::E_NONLIN_ID)
 {
 for (int c = 0; c < output.channels_; ++c)
 {
 int coffset_out = c * spatial_dims;
 for (int px = 0; px < spatial_dims; ++px)
 {
 // Identity function (no non-linearity), just add biases
 output.values_[coffset_out + px] += bias.values_[c];
 }
 }
 }

 /* Additional non-linear functions are removed in order to keep simplicity */
}

LBP cascade evaluation kernel
The C++ pseudocode enclosed below includes the main LBP face detection kernel (LBPCascadeEval-
uation) in charge of evaluating the boosted cascade of features, and annotated with OmpSs directives.
Additionally, it also shows the code of the method (FaceDetection_LBP) responsible for evaluating
the cascade of features for each scale of the synthetic pyramid, which is generated from the input pic-
ture. It should be noted that the pseudocode, and as such, it does not include the full source code. Con-
fidential code parts protected under NDA were removed.

#pragma omp target device(fpga,smp) copy_deps
#pragma omp task in(scaledFrame) inout(detections)
void LBPCascadeEvaluation(unsigned char* scaledFrame, int sstep, int swidth, int sheight, float scale,
 float threshold, std::vector<Detection> &detections)
{
 int x, y;

 #pragma omp parallel for

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 50 of 54

 for(x = 0; x < swidth – WINDOW_SIZE; x+=2) {
 #pragma omp parallel for
 for(y = 0; y < sheight – WINDOW_SIZE; y+=2)
 {
 float score = 0.0;

 for (int stage = 0; stage < NUMSTAGES; stage++)
 {
 // Locate central pixel in image, store horizontal and vertical steps
 const char *filter = LBP_FILTERS[stage];
 uchar* p = scaledFrame + (x + filter[0]) + sstep * (y + filter[1]);
 int stepw = filter[2];
 int steph = filter[3] * sstep;
 int bp = 0;

 // Build LBP pattern, comparing to the neighbors stated in the filter
 uchar* pn = p - stepw;
 bp |= (*pn > *p) << 7; pn += steph;
 bp |= (*pn > *p) << 6; pn += stepw;
 bp |= (*pn > *p) << 5; pn += stepw;
 bp |= (*pn > *p) << 4; pn -= steph;
 bp |= (*pn > *p) << 3; pn -= steph;
 bp |= (*pn > *p) << 2; pn -= stepw;
 bp |= (*pn > *p) << 1; pn -= stepw;
 bp |= (*pn > *p) << 0;

 // Accumulate scores
 score += LBP_SCORES[stage + bp];
 if (score < LBP_THRESHOLDS[stage]) { break; }
 }

 // If the score is greater than the threshold set by the user, the region must be classified as a face
 if(score > threshold)
 detections.push_back(Detection(x / scale, y / scale, WINDOW_SIZE / scale, WINDOW_SIZE / scale, score));
 }
 }
}

std::vector<Detection> FaceDetection_LBP(const std::vector<unsigned char>& frameIn, int width, int height)
{
 std::vector<Detection> faces;
 std::vector<unsigned char> scaledFrame;
 std::vector<unsigned char> img2 = frameIn;
 int swidth, sheight, sstep;
 int img2_width = width;
 int img2_height = height;
 float scale;

 // Process the image pyramid
 for (int idx=0; idx < NUM_SCALES; idx++)
 {
 scale = LBP_SCALES[idx];
 swidth = width * scale;
 sheight = height * scale;

 // Image resizing
 scaledFrame = BilinearResize(img2, img2_width, img2_height, swidth, sheight);
 img2 = scaledFrame;
 sstep = swidth;
 img2_width = swidth;
 img2_height = sheight;

 // Launch the LBP cascade evaluation kernel to detect faces
 std::vector<Detection> detections;
 LBPCascadeEvaluation((uchar*) scaledFrame.data(), sstep, swidth, sheight, scale, THRESHOLD, detections);
 #pragma omp taskwait

 // Insert detected faces
 faces.insert(faces.end(), detections.begin(), detections.end());
 }

 return faces;
}

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 51 of 54

YUV2RGB color space conversion kernel
Enclosed below is the full source code in ANSI C of the YUV2RGB kernel parallelized using OmpSs
annotations. The code shows two alternative kernel implementations. The first one is implemented us-
ing single-precision floating point arithmetic (yuv2rgb_fp), whereas the second uses 8 and 16 bit inte-
gers (yuv2rgb_int).

/* Required for clamping color components to [0,255] range */
#define CLAMP(x) ((x < 0) ? 0 : ((x > 255) ? 255 : x))

/*
 * YUV 4:2:0 planar NV12 format to RGBA 8:8:8:8 conversion Kernel
 *
 * This kernel assumes an input array "yuvframe" containing a picture
 * with a plane of 8-bit Y samples followed by an interleaved U/V plane
 * containing 8-bit 2x2 subsampled color difference samples.
 *
 * As an example, a 4x4 picture encoded in YUV 4:2:0 (NV12) should be
 * stored in the input array as follows:
 *
 * Y Y Y Y Y Y Y Y
 * Y Y Y Y Y Y Y Y
 * U V U V U V U V
 *
 * Thus, given a picture with WxH dimensions, the size of the "yuvframe"
 * array must be ((W x H) + (W x H) / 2).
 *
 * The color conversion implemented in the kernel is designed to be
 * executed on a CPU featuring a single-precision floating point ALU.
 *
 * The output RGBA 8:8:8:8 "rgbaframe" array could be then directly mapped
 * to a texture for displaying the picture on a screen.
 */

/* Floating point version */
void yuv2rgb_fp(uint8_t* yuvframe, uint32_t* rgbaframe, int w, int h)
{
 int i = 0, j = 0;
 float y, u, v;
 float r, g, b;
 int pitch = w * h;

 #pragma omp taskloop grainsize(16) private(i,j,y,u,v,r,g,b)
 for (j = 0; j < h; j++)
 {
 #ifdef DEBUG_ASSIGNMENT
 if ((j==0) || (j==h-1)) printf ("%d: Executing in %d (of %d)\n", j,
 omp_get_thread_num(), omp_get_num_threads());
 #endif

 for (i = 0; i < w; i++)
 {
 /* Input pixel (YUV 4:2:0) */
 y = (float) yuvframe[w * j + i];
 u = (float) yuvframe[pitch + (j / 2) * w + i - (i & 1)];
 v = (float) yuvframe[pitch + (j / 2) * w + i - (i & 1) + 1];

 /* Output pixel (RGB 24 bits per pixel + alpha channel component) */
 r = 1.164f * (y - 16.0f) + 1.596f * (v - 128.0f);
 g = 1.164f * (y - 16.0f) - 0.813f * (v - 128.0f) - 0.391f * (u - 128.0f);
 b = 1.164f * (y - 16.0f) + 2.018f * (u - 128.0f);

 /* Store the results in RGBA 8:8:8:8 format (opaque alpha component) */
 rgbaframe[w * j + i] = ((uint32_t) CLAMP(r)) << 24 |
 ((uint32_t) CLAMP(g)) << 16 | ((uint32_t) CLAMP(b)) << 8 | 0x000000FF;
 }
 }
}

/* Integer version */
void yuv2rgb_int(uint8_t* yuvframe, uint32_t* rgbaframe, int w, int h)
{
 int i = 0, j = 0;
 uint8_t y, u, v;
 int16_t r, g, b;
 int pitch = w * h;

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 52 of 54

 #pragma omp taskloop grainsize(16) private(i,j,y,u,v,r,g,b)
 for (j = 0; j < h; j++)
 {
 for (i = 0; i < w; i++)
 {
 /* Input pixel (YUV 4:2:0) */
 y = yuvframe[w * j + i];
 u = yuvframe[pitch + (j / 2) * w + i - (i & 1)];
 v = yuvframe[pitch + (j / 2) * w + i - (i & 1) + 1];

 /* Output pixel (RGB 24 bits per pixel + alpha channel component) */
 r = (298 * (y - 16) + 409 * (v - 128) + 128) >> 8;
 g = (298 * (y - 16) - 100 * (u - 128) - 208 * (v - 128) + 128) >> 8;
 b = (298 * (y - 16) + 516 * (u - 128) + 128) >> 8;

 /* Store the results in RGBA 8:8:8:8 format (opaque alpha component) */
 rgbaframe[w * j + i] = ((uint32_t) CLAMP(r)) << 24 |
 ((uint32_t) CLAMP(g)) << 16 | ((uint32_t) CLAMP(b)) << 8 | 0x000000FF;
 }
 }
}

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 53 of 54

SHL workloads

Pseudocode of the feature extraction module
The pseudocode of the feature extraction function populated with OmpSs annotations is included below
for reference.

/* -- */
/* ----- int cepstral_analysis(sigstream_t *, spfstream_t *) -------------- */
/* -- */
#define BUFF 20 // Number of 20 ms windows to be processed in parallel
int cepstral_analysis(sigstream_t *is, spfstream_t *os)
{
 Initialization of all required data structures
 /* ----- Loop on each frame ----- */
 while(1)
 {
 for(k=0; k<BUFF;k++)
 {

 get_next_sig_frame(is, .., buf) // Load data in buffArray[] vector from the "is" stream
 }
 if (k==0) break;
 for(i=0; i<k;i++)
 {
 #pragma omp task firstprivate(i)
 {
 Initialization of the data structures required
 sig_weight(); /* Weight signal */
 set_mel_idx(); /* mel idx init */
 log_filter_bank(); /* Apply the filter bank */
 dct(); /* DCT process */
 set_lifter(); /* Liftering */
 for (j = 0; j < numceps; j++)
 {
 cArray[ii*(numceps+1)+j]*= *(r+j);
 energy = sig_normalize() /* Energy */
 cArray[ii*(numceps+1)+numceps] =(2.0 * log(energy));
 }
 free the data structures used
 } // PRAGMA
 } // FOR
 #pragma omp taskwait
 spf_stream_write(os, &cArray[0], k); /* Save data in cArray[] vector to “os” stream */
 free the data structures used
 return(0);
} // WHILE

Pseudocode of the anisotropic smoothing module
The pseudocode of the anisotropic smoothing function with OmpSs annotations is enclosed below. In
order to reduce complexity, the pseudocode shows only the specific case of row-level granularity.

/* --- */
/* ----- void processAnisotropicSmoothing (const IplImage * pSrc, IplImage * pDst, int iterations, float lambda)-------- */
/* --- */
void processAnisotropicSmoothing (const IplImage * pSrc, IplImage * pDst, int iterations, float lambda)
{
 Initialization of the data structures required
 // Loop on iterations
 for (int k = 0; k < iterations; k++)
 {
 // Odd pixels
 for (int row = 1; row < image ->height - 1; row++)
 {
 #pragma omp task
 {
 for (int col = 2 - row % 2; col < image->width - 1; col += 2)
 {
 Read pixels in neighbourhood of original image
 Compute weber coefficients
 Write new value of point (row, col) into the image

Project: AXIOM - Agile, eXtensible, fast I/O Module for the cyber-physical era
Grant Agreement Number: 645496
Call: ICT-01-2014: Smart Cyber-Physical Systems

Deliverable number: D3.2
Deliverable name: Report on Proof of Concepts
File name: AXIOM_D32-v20.docx Page 54 of 54

 } // FOR
 } // PRAGMA
 } // FOR
 #pragma omp taskwait

 // Even pixels
 for (int row = 1; row < image ->height - 1; row++)
 {
 #pragma omp task
 {
 for (int col = 1 + row % 2; col < image->width - 1; col += 2)
 {
 Read pixels in neighbourhood of original image
 Compute weber coefficients
 Write new value of point (row, col) into the image
 } // FOR
 } // PRAGMA
 }
 #pragma omp taskwait
 Copy the first and the last row on the image
 } // End of iterations (k)

 Process the borders of image
 Copy the data in the output structure
 Release memory

} // End of function

Pseudocode of the iris recognition module
The pseudocode of the main function and the iris recognition module with OmpSs annotations is shown
below for reference.

/* --- */
/* ----- int main (int argc, char *argv[])---------------------- */
/* --- */
int main (int argc, char *argv[])
{
 Initialization all the data structures required
 while (true)
 {
 Get a new frame from the network
 osi.run (frame); // Start iris identification procedure
 }
#pragma omp taskwait
Release memory
return
}

/* --- */
/* ----- void OsiManager::run (cv::Mat &extFrame)--------------- */
/* --- */
void OsiManager::run (cv::Mat &extFrame)
{
 Detect the ROI inside the frame
 if (frontalEyeDetector (leftRoi, leftRectEye))
 {
 Initialization of the data structures required
 #pragma omp task
 {
 process the ROI (the left eye)
 } // PRAGMA
 }
 if (frontalEyeDetector (rightRoi, rightRectEye))
 {
 Initialization of the data structures required
 #pragma omp task
 {
 process the ROI (the right eye)
 } // PRAGMA
 }
 Release memory
} // End of function

