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GLOSSARY 
AEP – AXIOM evaluation platform 
ARM – Instruction set architecture developed by ARM Holdings Ltd. 
ASIC – Application-specific integrated circuit 
ATLAS – Automatically tuned lineal algebra software 
BLAS – Basic linear algebra subprograms 
CNN – Convolutional neural network 
FC – Fully-connected layer 
FFT – Fast Fourier transform 
FIFO – First in first out 
FP32 – 32-bit floating point number 
GCC – GNU compiler collection 
GLFW – Open-source multiplatform library for OpenGL, OpenGL ES and Vulkan 
GMM – Gaussian mixture model 
GUI – Graphical user interface 
HCI – Human Computer Interaction 
HDL – Hardware description language 
HLS – High-level synthesis 
IDCT – Inverse discrete cosine transform 
IDE – Integrated development environment 
INT32 – 32-bit integer number 
IP – Intellectual property or internet protocol (depending on the context) 
IRM – Iris recognition module 
LBP – Local binary pattern 
LibAv – Open-source libraries derived from the FFmpeg project to handle multimedia data 
LRN – Local response normalization 
Mali – A GPU microarchitecture developed by ARM Holdings Ltd. 
Mercurium – OmpSs compiler 
Nanos++ – OmpSs runtime 
NDA – Non-disclosure agreement 
NEON – SIMD extensions for the ARM instruction set 
NIC – Network Interface Controller 
OpenCV – Open source computer vision library 
OpenGL ES – Reduced specification of the OpenGL standard that targets embedded devices 
PCM – Pulse-code audio modulation 
PL – Programmable logic 
PReLU – Parametric rectified linear unit 
Qt – Cross-platform application framework developed by The Qt Company 
RGB – Red-Green-Blue color space format 
ROC – Receive operating characteristic 
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ROI – Region of interest 
RTL – Register transfer language 
RTSP – Real-time streaming protocol 
SGEMM – Single-precision floating-point general matrix multiply 
SHL/SLH – Smart home living scenario developed for the AXIOM project 
SIMD – Single instruction, multiple data 
SMP – Symmetric multiprocessing 
SMT – Simultaneous multithreading 
SoC – System on chip 
SPro – Open source speech signal-processing toolkit 
SSE2 – Streaming SIMD Extensions 2 
STD – Standard deviation 
SVM – Support vector machine 
SVS – Smart surveillance scenario for the AXIOM board 
VAD – Voice activity detection 
VHDL – VHSIC hardware description language 
VPM – Video processing module 
YUV – Luminance blue–luminance red–luminance color format 
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Executive summary 
This deliverable reports the application development and porting for Smart Video Surveillance and the 
Smart Home Living scenarios. 

The SVS case study implements a real-time face analysis framework that processes video feeds for 
surveillance applications. This framework is the core component of a software solution that is aimed to 
both increase security and gather demographic statistics in highly-crowded areas such as train stations, 
airports and shopping malls. In order to solve this challenging problem, an initial application framework 
prototype was developed for the target SoC included in the AXIOM board. The initial analysis and 
design space exploration of such face analysis kernels shows that the OmpSs programming model 
greatly increases the programmer’s productivity while scaling performance with minimal efforts. Ad-
ditionally, the developed prototype also served as a baseline for testing and training from scratch the 
required convolutional neural networks required for estimating the gender and age of detected faces. 

The SHL case study implements a solution to enhance the security level of dwellings, and to increase 
the natural interaction for end-users and their homes. The SHL solution was implemented looking for-
ward to take advantage of the heterogeneous resources of the AXIOM system through the OmpSs pro-
gramming model. A set of benchmarks were analyzed and enriched by the OmpSs directives in order 
to exploit the underlying SMP resources. The exploration has shown the possibility of easy parallelizing 
the SHL application by relying on OmpSs directives. The obtained results, knowledge gained on OmpSs 
programming model, and the visualization/profiling tools have created a solid base to continue the im-
provement of the SHL algorithms. Future work will take advantage of FPGA resources and scalability 
across nodes built from interconnecting several AXIOM boards. 

Designing an IoT product requires a different approach to user experience. Moreover, in AXIOM the 
challenges addressed by the two case studies rest on machine learning solutions. We must acknowledge 
that today there are no authoring tools for rapid prototyping Apps or Services based on Interactive 
Machine Learning. In the design of our prototyping environment, we found that the best opportunities 
were offered by App Inventor, an open source Web IDE. We extended App Inventor adding machine 
learning capabilities to facilitate the production of interactive prototypes of the future applications and 
services based on the challenges addressed in both case studies.  
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1 Introduction 

1.1 Document structure 
This deliverable contains a report on the work about the proof of concept and the porting of the SVS 
and SHL scenarios. The work is reported and organized as follows: 

• Section 2 describes the porting activity for the SVS scenario; 

• Section 3 describes the porting activity for the SHL scenario; 

• Section 4 describes the prototyping of envisioned applications and services; 

• Section 5 describes the data collection activity used for machine learning training. 

1.2 Tasks involved in this deliverable 
This deliverable is the result of the work carried out during the following task: 

• Task 3.2: Proof of Concept and Porting of SHL and SVS Case Studies 
 
Selection, envisioning and refinement of Scenarios to be put into scene by prototypes of AXIOM 
architecture in the domain of Smart Living Home and Smart Video Surveillance. 

 
Porting of the Smart Living Home Application and Smart Video Surveillance to the OmpSs 
Programming Model. 
 
Partner UNISI (Interaction Design group) will envision new scenarios for the using the AXIOM 
CPS platform. UNISI will take care of the “Role Prototyping” of the App/Service, while ad-
dressing the two challenges of services/system integration and appealing user experience. 
UNISI will define the Interaction Design pattern in the design of the application on the AXIOM 
CPS. UNISI will carry out the Conception and Definition of the user experience in adopting 
into scene the new enabling CPSs. 

Partner VIMAR will design and develop algorithms for real-time data management used in the 
Home Automation application. Partner VIMAR will develop a modular, cost and power effec-
tive software architecture including a reference version and the porting of such reference ver-
sion to the OmpSs programming model (the hardware part will be developed in WP6).  

Partner HERTA will design and develop algorithms for real-time face recognition used in the 
smart surveillance application. Partner HERTA will optimize the fine-grained parallel algo-
rithm for FPGA accelerator and will develop and port their application to AXIOM architecture 
using OmpSs. 

Partner BSC will give support to VIMAR and HERTA for the porting of the applications to 
OmpSs. 
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2 Smart Surveillance Scenario 
The Smart Surveillance Scenario (SVS) use case is modelled for serving as a proof of concept for an 
embedded version of a facial analysis product for marketing applications. This scenario leverages the 
AXIOM platform for performing low-power H.264 video decoding, face detection, and for conducting 
gender and age estimation in real-time on each person’s face appearing on a given video frame. Potential 
future end-user implementations of such technology include automated video surveillance for prevent-
ing terrorism and security threats, and marketing applications for the retail sector among many others. 
Those scenarios extensively rely on analyzing facial features on crowded locations to avoid discarding 
frames when they are broadcasted from live surveillance IP cameras. This performance requirement can 
be met by using a combination of traditional computer vision techniques and convolutional neural net-
works to guarantee high-accuracy. 

In order to avoid architecting IP blocks for implementing those kernels in an RTL hardware description 
language, the OmpSs programming model and #pragma annotations are extensively used to port se-
quential versions of the algorithms directly coded in C/C++ language. Complex steps such as caching, 
overlapping memory transfers with computations to hide latencies, and thread scheduling rely on the 
rest of the system architecture, e.g., on the BSC’s Nanos++ runtime. On the other hand, the automatic 
generation of HDL code of the hardware IP blocks from annotated C/C++ code is managed by BSC’s 
Mercurium compiler infrastructure by seamlessly interacting with Xilinx’s Vivado HLS tools to gener-
ate the proprietary bitstream for the target FPGA microarchitecture. 

In deliverable D3.1, it was disclosed that the SVS implemented in WP3 would rely mainly on four high-
level kernels that constituted a good representation for emerging video processing and machine learning 
workloads. These kernels are summarized again in Table 1 enclosed below. 

Table 1. Selected workloads for the SVS 

Kernel Name Description 

H264_video_decoding H.264 codec decoder working at slice level 

LBP_cascade_evaluation Face detection based on LBP patterns 

CNN_inference Convolutional neural network inference engine 

YUV_to_RGB Color space conversion for displaying frames 

 

The selected kernels are in fact subsequently split into several low-level calls to other kernels that im-
plement partial sub steps of the abovementioned processes. For instance, H264_video_decoding ker-
nel internally include entropy decoding, inverse quantization, IDCT, deblocking filtering, intra-predic-
tion and motion compensation. Similarly, the evaluation of the cascade classifier of LBP features 
LBP_cascade_evaluation performs several resizing and filtering operations to build a synthetic 
image pyramid, while CNN_inference depends on the inner architecture of the neural network model. 
In this latter case, the most resource-intensive parts are convolutions and the evaluation of fully-con-
nected layers as it has been pointed out in prior research works [1]. Finally, the color space conversion 
kernel YUV_to_RGB) is the most naïve one, and certainly does not constitute a challenging workload 
when compared to the others. 
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Source code of the selected kernels is included in the Appendix as a reference. Due to the complexity 
and length of the H264_video_decoding kernel, its corresponding code listings were omitted in this 
deliverable.  

Since the first prototype of the AXIOM board features the Xilinx Zynq UltraScale+ ZU9EG SoC, H.264 
video decoding cannot be performed on the fixed-function logic decoder since this hardware IP block 
is only available on the ARM Mali video processor included in the Xilinx Zynq UltraScale+ EV series. 
As such, for the moment it was decided not to implement video decoding on the FPGA using a third-
party IP block with the help of SECO as it was originally planned. The main reason behind this decision 
was to free up as much programmable logic (PL) resources as possible for the AXIOM NIC block, and 
for offloading time-critical face detection and CNN inference computations. 

2.1 Software architecture 
Between months m17 through m19, an initial working prototype of the SVS application was coded with 
the aim of integrating the execution flow of all the involved kernels for performing facial analysis using 
input H.264 videos in an easy manner. Since the standalone application kernels were meant to be pro-
filed and optimized with the toolsets and runtime environments provided by BSC, it was decided to 
develop the monolithic application in standard ANSI C language. This decision greatly simplified the 
debugging process and eased the interaction with the Mercurium compiler used for compiling the an-
notated kernels. As such, the prototype application interfaced with minimal third-party libraries mainly 
for display (OpenGL ES), and for video demuxing and decoding (LibAV [2]). 

Figure 1 depicts the high-level architecture of the different software components involved for profiling 
and testing the selected kernels. 

OpenGL ESGL Texture Displaylibavformat

H.264 Slice

libavcodec

YUV Frame lbp_cascade_evaluation

CNN_inference

Input Video

YUV_to_RGB

LBP Feature Cascade

Gender CNN Model

Age CNN Model

 

Figure 1. High-level architecture of the SVS prototype application. 

Input video footage (either a file or a live RTSP stream) is parsed and demuxed by means of the li-
bavformat library, which is manually set to only retrieve a video stream tagged as AV_CO-
DEC_ID_H264. At this point, H.264 slices are decoded on software on CPU cores by relying on the 
multithreaded implementation of the libavcodec library. It should be noted that at a future stage of 
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the AXIOM project, this video software decoding layer could be replaced by an IP block if enough PL 
resources are freed up. 

The output of the decoder is usually a YUV4:2:0 raw video frame, in which chrominance components 
are discarded as the selected facial analysis algorithms require only luminance. Therefore, an output 
buffer of uint8_t luminance components obtained from the decoded frame is used as an input of the 
LBP_cascade_evaluation and CNN_inference kernels. Finally, the results of such steps (e.g. 
bounding of located faces and estimation of demographic attributes) are annotated over the RGB color 
version of the decoded frame obtained after calling to the YUV_to_RGB kernel. After such color con-
version takes place, the final resulting buffer is mapped into a texture to display the final results through 
the OpenGL ES pipeline. 

Since the development and debugging of the prototype application was conducted on a PC platform in 
which the GPU driver used for display only has OpenGL support on Linux environments, the GLFW 
version 3.2.1 library was also selected for ensuring portability. This fact enabled OpenGL ES support 
for the ARM Mali-400 GPU included on the Xilinx Zynq UltraScale+ SoC, and the typical OpenGL 
stack available on PC platforms. 

. 

2.2 Face classifier cascade model 
The binary face classifier model used for locating faces on the SVS application prototype was trained 
by HERTA using proprietary internal tools and databases, and will not be publicly released at the end 
of the AXIOM project. This model consists of a cascade of features trained using a customized version 
of the classic Adaboost algorithm [3] (see Figure 2). As previously agreed, the selected features are 
based on the well-studied local binary patterns (LBP) since they provide a good trade-off between ac-
curacy and speed for low-power embedded devices. Even though state of the art results in accuracy for 
face detection are obtained using very deep CNNs, it is still unfeasible to adopt them in low-power 
embedded devices that target video frames involving dozens of simultaneous faces at HD resolutions 
and beyond. Real-time applications using deep CNNs for object detection at HD or 4K resolutions, 
currently require a full-custom ASIC specifically designed for inference, a high-end discrete GPU or a 
high-density FPGA. All three implementations are expensive, and the latter two usually dissipate more 
than 100 Watts at 16 nm [4] [5]. 
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Figure 2. Evaluation of the face classifier cascade 
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Additionally, LBP features do not require to perform complex operations, and work with 8-bit integer 
arithmetic, which are more power-efficient and simpler to map to the underlying FPGA architecture 
during synthesis than other features requiring floating point arithmetic. 

As a result of this, the obtained cascade has over a thousand LBP features, works with faces as small as 
48x48 pixels, and when evaluated accumulates single-precision floating point scores resulting from 
extracted features until the target threshold is met or a given feature early rejected. Therefore, an ex-
haustive sliding-window approach is effectively used for analyzing the input image with the purpose of 
quickly discarding regions not containing faces. Even though less accurate, this approach clearly has 
benefits when compared to other face detection algorithms involving CNN architectures such as the 
widely used VGG-16 [6], GoogleNet [7], ResNet [8] or variations of the Faster R-CNN [9] framework. 

Further work will be carried out with our model during FPGA implementation to avoid using floating 
point arithmetic for scores. A common approach is to replace these values with binarization and fixed-
point arithmetic, similarly as it is currently being done for neural network pruning targeting inference 
on low-power embedded devices. These strategies will be explored between months m26 and m36. 

Finally, the obtained trained cascade model and the evaluation source code used was kept confidential, 
and distributed between the interested AXIOM partners under NDA in order to discuss the potential 
optimization strategies to be followed. 

2.3 Convolutional neural network models 
After face coordinates and dimensions are located on a given video frame, the SVS prototype applica-
tion conducts the required underlying analysis of the facial features for marketing and surveillance. This 
analysis is implemented by means of several CNNs that are meant to be executed in parallel on the 
programmable logic using task-based parallelism. 

During months m13 and m20 the construction and modelling of such networks took place. So far, the 
AXIOM project has succeeded in training two highly-accurate deep CNNs for face gender classification 
and age estimation. The architecture of such networks was designed from scratch, and thus it is not 
based on the generic deep learning models already found in popular frameworks such as Caffe [10], 
Torch [11] or TensorFlow [12]. Figure 3 depicts the different layers used in the gender classifier, and 
age regressor. The binary classifier for gender estimation is implemented using a 10-layer neural net-
work while the age regressor consists of 11 layers. The input of both networks is a given detected face 
(i.e. image region) that must be downscaled to map the expected input size of the first convolutional 
layer. At this point, each network use different types of layers by relying on convolutions, parametric 
rectified linear units (PReLU), standard deviation (STD) or max-pooling, local response normalization 
(LRN), fully-connected (FC), maxout units and softmax functions. Finally, the output of the gender 
classifier network is an integer (0,1) encoding whether the input image is male (0) or female (1). Simi-
larly, the regressor outputs the age estimation normalized in the interval (0.0-1.0), and encoded using a 
32-bit floating-point number. 
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Figure 3. Architecture of the facial analysis CNNs trained for the AXIOM project 

The purpose of designing and training such networks from scratch was useful for HERTA for gaining 
highly valuable knowledge about this very complex fine-tuning process. Another important reason was 
to succeed producing models with lower computational footprint than other alternatives typically re-
quiring a power-hungry high-end discrete GPU for real-time CNN inference. 

The obtained ROC curves benchmarking the accuracy of such networks on several research databases 
are going to be kept confidential, as they were trained using proprietary HERTA face databases in 
combination with several data augmentation techniques, and will be later integrated on a future com-
mercial product. The size of the database used for training the networks was tens of thousands of pic-
tures before applying data augmentation, which by itself increased several orders of magnitude the 
number of pictures. Other model parameters such as dimensions of matrices, the strides used for con-
volutional layers, and number of channels are also not going to be disclosed on publicly available de-
liverables. Therefore, another approach was used to achieve our project goals as described below. 

In order to guarantee compliance with the mandate of open access research data sets described in the 
guidelines of the Horizon 2020 program, HERTA partnered with UNISI to construct a face database 
for retraining the CNN models earlier described. This face database will be publicly released on the 
AXIOM website at the end of the project. It is expected that this approach will be a win-win for both 
all the partners involved in the AXIOM project and the whole academic research community: 

- Firstly, HERTA can add the pictures collected by UNISI to its internal proprietary face database 
to improve the quality of the models used in its products. 

- Secondly, AXIOM partners will have access to working CNN models trained exclusively with 
the database collected by UNISI, which will be enough for evaluating optimization strategies 
for speeding-up CNN inference on the PL of the AXIOM board. This also guarantees repro-
ducible research results, as there are no IP restrictions with such database and models. 

- Finally, the research community will also have the possibility of downloading the AXIOM face 
database using a permissive license. As such, the research community can also use the pictures 
to increase the size of their data sets, and thus improve the overall quality of deep learning 
models for face analytics. 
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Figure 4. User interface of the AXIOM face annotator application 

Once this decision was agreed with UNISI, during month M14 a face annotator tool (shown in Figure 
4) was developed by HERTA to increase the productivity of the process of capturing and labelling 
pictures for the facial database. The open-source application is available at the project’s GIT server, 
and was successfully tested working with USB webcams, network-based surveillance cameras, and pre-
recorded video files. 

The AXIOM face annotator tool was developed in C++ by relying on the Qt5 cross-platform application 
framework. The idea of this side development was also to label attributes such as gender, age, ethnicity 
and other features (i.e. glasses, sunglasses, beard and moustache) in the pictures collected by UNISI. 
Future improvements could also include the possibility of adding fiducial landmark points to further 
improve the accuracy of the CNN models. 

2.4 Status of porting to the AXIOM platform using OmpSs 
In accordance with the architectural decisions described in subsection 2.1, the selected kernels were 
isolated in separated .c and .cpp files and directories. The full source code of the LBP-based face 
classifier, CNN inference engine, and color space conversion is available on the AXIOM GIT server. 

The development of the prototype was conducted on an x86-64 workstation with the aim of transpar-
ently porting the CPU host code later to the ARMv7 and ARMv8 architectures available on Xilinx SoC 
platforms by means of the backend of the C/C++ compiler used for generating the application binary. 
As such, the host CPU code containing the main software loops, file I/O management, user interface 
management, and final rendering/screen compositing was compiled using the stable branch 5.4.x of 
GCC. These parts of the SVS prototype application were obviously not related to FPGA PL offloading, 
and therefore did not target any performance optimizations. Device code targeting the dataflow engine 
to be synthesized on PL was annotated following the advice and recommendations of BSC’s research-
ers. Typically, the code of the selected algorithms (see the Appendix) were implemented using nested 
loops, and therefore parallelized using #pragma omp taskloop and #pragma omp for directives. 
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The source code of a lightweight work-in-progress SVS application (demographics) is also available 
on the AXIOM project GIT server. When compiled, it works with any input video file container format 
supported by LibAv or URL address of a remote RTSP surveillance camera. The application has been 
successfully compiled and tested on both an x86-64 Linux workstation and on a Xilinx ZC706 board. 

In order to simplify the parallelization process to the maximum extent and minimize errors, it was de-
cided to target first during the second year SMP architectures (i.e. x86-64, ARMv7 and ARMv8) with 
OmpSs annotations (i.e. #pragma omp target device smp) to ensure the correctness of the paral-
lelized kernel code. It is expected that once the interaction between OmpSs@FPGA and Nanos++ 
runtime for the management of FPGA memory data transfers is fully completed (i.e. data-copy clauses) 
during the third year, RTL code targeting the FPGA PL will be automatically generated. As it was 
already discussed in deliverable D4.1, this stage of the design flow will be implemented by calling the 
Xilinx Vivado HLS compiler simply by replacing the #pragma omp target device smp annotation 
with the fpga target. Finally, the bitstream generation of kernels will be implemented using scripts 
developed for automatically calling Xilinx’s synthesis tools available in the Vivado suite.  

Scalability among several AXIOM boards will be achieved during third year by means of the Nanos++ 
runtime and OmpSs@Cluster, as it has already been demonstrated for a matrix multiply example in 
deliverable D4.2. As it is well-known, the matrix multiply operation is also a requirement for imple-
menting convolutions and fully-connected layers when inferencing CNNs. 

Regarding the main binary generation, the isolated kernel source code .c and .cpp files were compiled 
with OmpSs/Mercurium version 2.0.0 713c99c using the --ompss and --instrument command 
line options for generating the required object files, linked against Nanos++ version 0.10.3, and with 
the remaining sequential modules plus the required third-party libraries. This final linking step was 
performed also using BSC’s Mercurium compiler. 

2.5 Profiling and parallel scalability 
Initially, the selected kernels were studied in an isolated manner with minimal test applications using 
the same input files (e.g. same input pictures for both LBP face classifier / YUV2RGB kernels, and 
same matrices for CNN inference). The validation and correctness of the parallelized kernels were guar-
anteed by matching the obtained results against expected output files, which were previously computed 
using the sequential CPU version of the same algorithms (cf. D7.1 Section 6). 

Parallel scalability on the SMP target platforms were studied by launching the test applications and 
subsequently varying the NX_SMP_WORKERS environment variable between executions, effectively it-
erating multiple runs ranging from 1 to the maximum number of cores available in the underlying plat-
form (i.e., 12 logical cores in the case of the Intel Core i7 desktop platform featuring hardware-enabled 
SMT, 2 physical cores in the case of the Xilinx ZynQ-7000, and 4 physical cores on the Xilinx Zynq 
UltraScale+ ZU9EG). Finally, hand-coded SIMD vectorization on CPUs was discarded as a CPU base-
line for the LBP face classifier and YUV2RGB kernels. Even though these kernels offer opportunities 
for hand-crafted SIMD parallelization, this was not an objective pursued by the AXIOM project as the 
parallelization efforts are managed by the OmpSs programming model and runtime. 

2.5.1 Convolutional neural network inference 
CNN inference was a special case, when compared to the other kernels. Even though it is possible to 
implement parallel naïve CPU versions of the layers involved in both gender and age estimation CNNs 
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with nested loops, this approach is not computationally efficient as it involves low-level matrix multiply 
operations. Matrix multiply on CPUs is nowadays a well-studied problem, and it is usually implemented 
with BLAS libraries optimized by hand at the assembly level with SIMD instructions. As such, we 
selected the open-source ATLAS library [13], and relied on the SGEMM operation as the low-level 
CPU backend, even though at the high level the code was annotated with OmpSs directives. In the 
future, we plan to use also as a CPU baseline the GEMM-lowp [14] library recently released by Google, 
as it includes support for 8-bit matrix multiply operations (used in quantized/pruned CNNs), and it is 
optimized for ARMv7 and ARMv8 platforms at hand using assembly NEON instructions. This latter 
library is a more suitable baseline for comparing the CPU versions of the implementation of CNNs 
layers running on the ARM cores available on the FPGA against the computations offloaded to the PL. 
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Figure 5. Execution time distribution of the different layers of the trained CNNs 

Due to the importance of CNN inference for the SVS application, the different neural network layers 
were profiled for both trained CNN models to determine the most time-consuming layers (see execution 
times in Figure 5). These benchmarks were conducted by compiling the CNN inference engine to target 
the x86-64 architecture, and executed on an Intel Core i7-4770 3.4 GHz microprocessor using as an 
input a single face. The BLAS library used for these tests was the ATLAS library version 3.10.2, which 
as opposed to the recently-released Intel MKL-DNN [15] library, only has support for old SSE2 SIMD 
vector extensions. Nevertheless, this fact was not a major drawback for an initial code hotspot analysis. 
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The obtained performance results included below depict the latency in milliseconds per layer, and also 
the inference time distribution across layers for each CNN model. 

As the obtained results show, it is only worth to offload to the PL of the FPGA convolutions and fully-
connected layer computations. These results are in line with inference time distributions reported in 
earlier works found in the literature for other network architectures such as VGG-16 [1]. As it is also 
known, those layers are internally implemented using linear algebra by means of the abovementioned 
SGEMM operation available in the BLAS specification. The source code of the convolve operation 
used in the CNN inference engine is included as a reference in the Appendix. The implementation 
annotated with OmpSs directives, and an in-depth analysis of a naïve matrix multiply kernel working 
on the PL of the Zynq-7000 SoC was conducted by BSC researchers. Kernel source code, and prelimi-
nary results for this study are detailed in sections 2.4.1 and 4.1.2 of deliverable 4.2.  

Unfortunately, more sophisticated alternatives for speeding up convolutions on the AXIOM board re-
quire a low-level access to the DSP48E2 slices found on the UltraScale+ architecture. These optimiza-
tions were proposed by Xilinx during 2016 in the whitepaper Deep Learning with INT8 Optimization 
on Xilinx Devices [15], and basically rely on packing two INT8 operations in the multiply-accumulate 
unit available in the DSP48E2 slice. However, this optimal solution requires to reschedule HERTA’s 
porting efforts from software development and analysis to retraining and pruning the CNNs models. 
The challenge is to retrain the CNNs using low-precision 8-bit integers rather than single-precision 
floating point arithmetic while keeping a similar ROC accuracy. 

When these pruned CNNs are ready, further potential low-level optimization proposals may be dis-
cussed with BSC for future integration in the OmpSs@FPGA framework.  

2.5.2 LBP face detector 
The selected face detector kernel relies on boosted ensembles and a well-known image descriptor (i.e. 
LBP). The core algorithm of the evaluation of the classifier cascade basically consists of two high-level 
nested loops (see the pseudocode included in the Appendix). These loops are in charge of computing 
the boosted ensembles by relying on a sliding window, which is responsible for scanning a synthetic 
image pyramid generated from the input frame. This image pyramid is necessary for enabling the de-
tection of faces of arbitrary size using a fixed-sized sliding window. On top of these loops, there is an 
additional one responsible for executing the face detector kernel for the multiple scales constituting the 
image pyramid. 

Internally, the sliding window must evaluate all LBP features until a given threshold is violated (see 
Figure 6). As such, this algorithm yields a highly irregular control flow due to the fact that the iteration 
count of the inner loop depends on the characteristics of the input image. Therefore, if an input image 
does not contain any faces, the first LBP features of the cascade will soon violate thresholds, and the 
remaining loop iterations will not be completed thus dramatically speeding up the kernel. On the other 
hand, if the amount of faces appearing on a given image represents a high percentage of the total area 
of the input frame, the little opportunities available for early rejection of image regions will increase 
the execution time of the face detection kernel.  

This unbalanced behaviour is common for any object detection cascade classifier based on the sliding 
window approach. As the sample depicted in Figure 6 illustrates, the processing latency in clock cycles 
of each image patch analyzed by the sliding window (right) is highly correlated with image regions 
containing faces (left). 
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Figure 6. Execution time of a cascade of features (right) for an input image (left) 

From a coarse-grain parallelization perspective, a challenging scenario is considered as the baseline 
input for the experiments. As such, kernel parallelization efforts were conducted using as an input the 
same 1080p picture containing 25 faces. This ensures that a high percentage of image regions will reach 
the latest LBP features rather than being discarded too early on the first stages of the cascade. 

The selected picture is available on the private AXIOM GIT server and is named testImage.raw for 
ensure reproducibility of the obtained results. 
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Figure 7. Parallel scalability of the LBP face detection kernel annotated with OmpSs (please note that Zynq 7000 is a 32-bit 
platform while Intel Core i7 is a 64-bit platform) 

For the initial design space exploration and porting on SMP platforms, it was decided to create a task 
for each one of the LBP kernel calls required for evaluating the NUM_SCALES images constituting the 
synthetic input image pyramid. As the code included in the Appendix shows, it is only necessary to add 
a single #pragma omp task annotation preceding the header of the LBPCascadeEvaluation func-
tion implementing such kernel. When the execution of the kernel concludes, a #pragma omp 
taskwait directive is also necessary to ensure synchronization and the correctness of parallel execu-
tion. Even though that further low-level optimizations are possible, this simple parallelization strategy 
succeeded in obtaining a 1.16x speed up on the dual ARM A9 CPU cores of the Zynq-7000 platform 
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when the number of worker threads was increased from one to two. Similarly, a 1.44x speed up was 
observed when increasing the number of worker threads from one to four on the Intel Core i7-3400. 

It should be noted that these results were obtained when the LBP kernel was compiled without enabling 
aggressive compiler optimizations. In order to determine the potential effect of such optimizations, the 
kernel was recompiled again using the -mfpu=neon option in the case of the ARMv7 target, and 
optimization level -O3 on both x86-64 and ARMv7 (32-bit) targets. These optimizations significantly 
reduced the execution time on the ARM A9 cores (see Figure 7), and yielded a 3.06x speed up when 
compared to the unoptimized -O0 baseline OmpSs kernel code running a single worker thread. When 
the worker thread count was increased to two, it yielded a 6.59x speed up against the -O0 version, and 
a 2.15x against the -O3 optimized version, respectively. The speed ups observed in the -O3 optimized 
versions of the executed on the Intel Core i7-3400 platform were almost negligible. This latter effect 
was probably related to the aggressive prefetching, branch prediction, and out-of-order execution capa-
bilities available on the x86-64 cores when compared to the simpler in-order ARM A9 cores. It has also 
be stressed that the typical power consumption of the Zynq-7000 is about 5W while the Core-i7 typi-
cally uses a 100W (more precise measurements are also in progress). 

Experiments enabling more than two worker threads on the dual ARM A9 cores were not possible, as 
the main application crashed and the bug could not be successfully tracked. However, it is expected that 
further increases of the worker thread count beyond two would not bring any particular benefits on the 
dual core platform when both cores were running at 100% of usage while executing the kernel. 

 

2.5.3 Color conversion 
Another important step involved in the SVS prototype application is video display to end-users. The 
main kernel involved in this task is the one related to color space conversion (YUV_to_RGB). Two 
different versions of this kernel have been implemented (i.e. using floating point (FP32) and integer 
(INT32) operations). The main idea behind this decision was to determine if the type of operations 
substantially impacted on performance. As it is shown in the Appendix, the color space conversion 
kernel was parallelized using the OmpSs programming model simply by adding a single annotation 
(#pragma omp taskloop grainsize(16) private(i,j,y,u,v,r,g,b)) on both FP32 and 
INT32 implementations. 
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Figure 8. Parallel scalability of the color space conversion kernel annotated with OmpSs 

The initial results of such parallelization on CPU cores are shown on Figure 8. As it was initially ex-
pected, the execution time scales with the number of cores available on the underlying platform (Zynq-
7000, Zynq UltraScale+, and Intel Core i7-4770) as the number of worker threads are increased.  In the 
case of the Zynq-7000, since the SoC features only two ARM A9 cores, creating more than two worker 
threads even degrades performance substantially. On both quad-core platforms (UltraScale+ and Intel 
Core i7-4770) execution time is further reduced when the worker thread count equals four. It should be 
noted that the highest speed-ups (2x) are obtained when the number of worker threads is set to two, and 
then performance improvements marginally diminish as the worked thread count is further increased. 
Again this comparison is done only taking into account the pure performance and not the global power 
consumption which is about 5W in the case of Zynq- Ultrascale+ while it is about 100W in the Intel 
Core i7. 

On the other hand, since the final color picture quality is quite similar if the low-level kernel implemen-
tation is switched from FP32 to INT32 operations, extra reductions in the execution time are possible 
simply by relying on integer operations. This improvement in performance related to INT32 operations 
was quantified, and on average provided an additional 15% benefit. 
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3 Smart Home/Living Scenario  
The SHL case study implements a solution to enhance the security level and comfort of homes. The 
developed solution consists of a system that can analyze multimedia streams broadcasted from specific 
points inside and outside of smart homes. This system receives multimedia streams broadcasted from 
devices attached to the network. Then demuxes and decodes audio and video streams, and analyzes   
raw data using machine learning algorithms to gather precious information. The information extracted 
from multimedia streams are subsequently processed to define the feedback that will be finally reported 
to the end-users living in the smart home environment. 

The main goal of the SHL scenario developed in the context of the AXIOM project is to achieve a high 
level of home automation, and to allow a natural interaction between end-users and their homes. To 
achieve this goal, it is required not to interrupt the end-user action flow while analyzing data, and to 
generate the feedback very rapidly. This challenge represents a strict timing constraint in the envisioned 
architecture of the SHL scenario. 

In order to take advantage of the heterogeneity and the cluster architecture developed for the AXIOM 
project, the SHL software application extensively relies on OmpSs directives. Several OmpSs@SMP 
solutions have been explored with the aim of defining both the tasks that can be concurrently executed 
and the granularity required to satisfy the performance targets of the SHL application. The results of 
this analysis of the multi-core system will be used for the actual development of the FPGA and the 
cluster to exploit the resources of the AXIOM board. In this way, OmpSs@FPGA directives will be 
used to efficiently synthesize the most time-consuming sections of the selected kernels on FPGA PL 
resources. After kernels are properly implemented in PL, OmpSs@Cluster will be used to split and 
parallelize the execution of the application in different nodes of the cluster. This architecture is designed 
to meet real-time constraints, and to minimize hardware resources while keeping a low power consump-
tion target. 

3.1 Software architecture 
The SHL software application was designed and developed during months m12 and m22. It required to 
analyze several open-source audio and video processing frameworks, libraries, toolkits and algorithms. 
As such, the SHL software was developed with high-modularity in mind in order to simplify the testing, 
profiling and optimization phases. The main blocks that characterize the developed SHL application are 
divided into on-line blocks and off-line blocks. On-line blocks process data at run-time, so they need to 
meet real timing constraints. On the other hand, off-line blocks generate the required models used in 
machine learning algorithms, and do not suffer from time constraints. 

• ON-LINE BLOCKS 
o Input block: It gathers multimedia data from the network, demuxes and decodes the 

audio and video data. The input block also manages the FIFOs required for storing data. 
This block is based on the GStreamer open-source framework. 

o Trigger block: It recognizes the event enabling the start of the identification phase. 
o Speaker identification block: It processes the audio track recorded. Then it extracts 

features from the input audio, and compares them with probabilistic models for speaker 
identification (i.e. to grant/deny people’s access into their home premises). 

o Iris recognition block: It processes all input frames, and locates the position of eyes 
inside images. If the eyes were found, it then performs the extraction/generation of the 
iris code of located eyes, and later compares it with the iris code of enrolled users. 
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o Fusion block:  It performs the biometric fusion of both the iris recognition and speaker 
identification processes.  It also defines the feedback action.  

• OFF-LINE BLOCKS 
o Speaker training block: It trains the target speaker models and organizes the underly-

ing file system.  
o Iris training block: It trains the iris code of the target and organizes the file system. 

As it has been pointed out, the on-line blocks characterizing the SHL application are mainly the speaker 
identification block and the iris recognition block. These two blocks are presented in the next section. 

3.1.1 Speaker identification block 
The speaker identification block was developed during months m12-m16. It is based on ALIZÉ [16], 
an open-source platform for speaker recognition developed in C++, and on SPRO [17], an open-source 
speech signal-processing toolkit developed in C. Figure 9 shows the architecture of the speaker identi-
fication block. This block processes a chunk of audio captured from the input block. Then it decides if 
inside the audio stream there is a human voice signal, and finally extracts the voice sample. If the voice 
signal has a good quality, biometric features are extracted and then matched against the models of pre-
viously enrolled subjects. The result of these computations is used to identify whether the speaker is 
authorized or not to perform the operation requested (i.e. basically, to deny/grant access to the home). 

The main steps of the speaker identification block are:  

• Extracting a set of features from input audio data. 
• Identifying and normalizing the features that describe human voice. 
• Matching the extracted features by relying on probabilistic models (Gaussian Mixture Model 

GMM) against a database of pre-enrolled persons. This list of persons must be able to access 
their home premises using biometric authentication. The probabilistic models of these individ-
uals are generated with the help of the off-line training block. 

• Normalizing the results of the compare/matching operation using two different methods. The 
output of the methods is used for determining if the processed audio matches an enrolled person. 

 
Figure 9. Schema of the speaker identification blocks. 
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3.1.2 Iris recognition block 
During months m17-m20 the iris recognition block was designed and implemented. It is based on OSI-
RIS [18], an open-source iris recognition software and relies on OpenCV [19] , also an open-source 
computer vision library.  Figure 10 shows the architecture of the iris recognition block. From a high-
level perspective, this block is subdivided into two additional low-level blocks:  

• A Video Processing Module (VPM)  
• An Iris Recognition Module (IRM) 

The VPM processes all the frames gathered from the input block. This module identifies and extracts 
the coordinate of the Regions Of Interest (ROIs), which is the minimal box that incorporates an eye 
inside the frame (i.e. Eye Region Detection block, and Eye Region Extraction block). ROIs are pro-
cessed to extract the metrics required for determining the image quality (i.e. Image Quality Assessment 
block). Then metric values are tested against a threshold range in order to determine if the image quality 
meets the minimum standards. Basically, this process checks if the regions enclosing eyes were captured 
using correct light conditions and sharpness using previously fine-tuned thresholds. Finally, ROIs are 
sent to the IRM. However, if they violate image quality thresholds, they are discarded (i.e. Image Se-
lection block).  

The IRM processes the input ROI to generate the iris code of the previously found eyes. This module 
is also used in the iris training block (off-line block) when computing the iris code for the access control 
of subjects into their home. Inside the IRM, the inner and the output boundaries of iris are detected (i.e. 
Segmentation block). Thereafter, the iris annulus is transformed into a size-invariant strip, following 
Daugman’s rubber-sheet method. This new image is then filtered to extract iris features, and finally, an 
iris code is generated as a selection of the complete set of features. To conclude the pipeline, the match-
ing phase consists in finding the distance from the processed iris codes to the codes saved in the enrolled 
subjects database. The final match decision is based on meeting a minimum threshold distance. 

 

Figure 10. Schema of the iris recognition blocks 
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3.1.3 Application workflow 
The final integration of the multiple abovementioned blocks, and the application workflow code was 
developed and extensively tested during months M20-M22. The obtained SHL software processes the 
flow of the input audio and video streams in order to grant/deny access by performing matches against 
the database of pre-enrolled subjects (Figure 11).   

The recognition phase starts after the identification of a trigger event. After this event is captured, the 
application starts to analyze in sequential mode multimedia streams. The audio track is processed only 
after having recorded a voice sample of a pre-defined length. This sample was set to 3 seconds in the 
proof of concept tests. On the other hand, video processing starts as soon as a frame is broadcasted. 
Figure 12 shows an example featuring the input data processed over time by the SHL application. 
 
However, this simplified representation does not show the latency required to process different video 
frames, as this depends on the characteristics of the frame currently analyzed. The number of frames 
required to recognize the iris of a given person is closely related to the degree of cooperation of the user 
with the video capture system. If the end-user is not cooperative, it could become very difficult to cap-
ture pictures with the adequate quality and angles for enclosing eye regions. 

 
Figure 11. The SHL application workflow 

 

Figure 12. Sequential approach for the SHL application 
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3.2 Performance target goal and initial baseline performance 
The SHL application checks the user’s identity before enabling his/her command request to the smart 
home system. In order to enable a natural interaction, this operation must be as fast as possible so it 
cannot degrade or interrupt the smoothness of the user action flow.  

The amount of time required for the end-user identification is strongly correlated to the degree of co-
operation the end-user has with the SHL system. Similarly, the quality of multimedia data recorded also 
has an impact on the recognition latency. Therefore, the time required to process an audio sample and 
a given frame is affected by these unpredictable issues. Table 2 presents the initial baseline performance 
results. The input workloads used for the experiments were the following: 

• An audio sample of 3 seconds (PCM format) with 16-bit depth and sampling rate of 16 KHz 
• A video stream in Full-HD resolution (1920x1080) with ROIs of 260x260 pixels   

The first three lines of Table 2 are related to the three main steps of the speaker identification process: 

• Feature extraction (with the algorithm presented in next section) 
• Voice activity detection and feature normalization 
• Pattern matching recognition of the features with the target models (GMMs) 

The last three lines of Table 2 are related to the processing time of an image with three different types 
of complexity: 

• In the first case, the image does not incorporate any ROIs, and the frame is discarded after the 
VPM process. The process time includes VPM processing time latencies but not IRM pro-
cessing time latencies. 

• In the second case, the image incorporates a single ROI. The processing time includes VPM 
and IRM processing time latencies. 

• In the third case, the image incorporates two ROIs, so processing time includes VPM and two 
IRM processing time latencies. 

All the measures presented in Table 2 were obtained after averaging the latencies of 10 executions of 
the final SHL application. All benchmarks were performed on the AXIOM Evaluation Platform (AEP) 
(cf. D7.1, D7.2) equipped with the Xilinx-Zynq7000 SoC. The application was compiled with g++ 
(version 4.8.2), and enabling the –O2 compilation flag. 

Table 2. Execution time of the SHL scenario on the AEP. 

Operation Execution time 
Feature extraction in a 3-seconds audio sample   0.2 sec 
Energy detection and normalization 0.15 sec 
Compute speaker pattern matching (with 9 GMMs) 0.67 sec 
Process a frame without ROIs 0.27 sec 
Process a frame with 1 ROI 3.7 sec 
Process a frame with 2 ROIs 7 sec 
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On the original AXIOM proposal, it was mentioned that the video decoding process must be imple-
mented using a third-party IP core on the FPGA reconfigurable logic. As such, the implementation of 
the interconnection of the video decoder with chip memory and ARM cores requires a close collabora-
tion between SECO and VIMAR partners.  

The proposal was written with the hypothesis that it was feasible to decompress H.264 video streams 
on the Xilinx Zynq-7000 SoC. As it is already known, this SoC does not include an on-die hardware 
video decoder. Additionally, H.264 software video decoding on the ARM A9 cores yields a very low 
performance, and it is thus unable to sustain the required frame rates for real-time applications. This 
fact has been independently confirmed by both VIMAR and HERTA partners with initial tests con-
ducted on the ARM-A9 cores of the Zynq-7000 platform. 

However, the recently released Xilinx Zynq UltraScale+ SoC was finally selected for the first AXIOM 
prototype board. This change in the original board specifications had an impact on the initial hypothesis 
and project’s planning efforts. The Xilinx Zynq UltraScale+ SoC includes a quad-core ARM Cortex-
A53 clocked up to 1.5 GHz, and its EV family includes an on-die H.264 / HEVC (H.265) high-perfor-
mance video decoding engine.  For this reason, VIMAR and SECO decided to cancel the planned pur-
chase of a third-party H.264 IP video decoder block, and the corresponding development of the logic 
within the FPGA to manage it. The final decision was also motivated by considering this latter approach 
a very uncompetitive solution for the market. The first prototype of the AXIOM board is based on the 
EG device family, which do not integrate the video decoder. The EV family was still not in production 
on silicon at good yields, and thus was not available for the first board prototype. For these reasons, the 
initial prototypes of both SHL and SVS applications running on the AXIOM board will perform soft-
ware video decoding on CPUs. 

3.3 Optimization process using the OmpSs programming model 
On deliverable D3.1, it was hypothesized that the SHL application implemented in WP3 would rely 
mainly on three high-level kernels. These kernels are summarized again in Table 3.  The first two ker-
nels are related to audio processing, and the latest one to video processing. All these benchmarks are 
related to machine learning workloads. 

Table 3. Proposed kernels representing the SHL scenario workloads. 

Kernel Name Description 

Voice_Activity_Detector Algorithm to label speech frames 

Speaker_Recognition Pattern matching for speaker identification 

Iris_Recognition Pattern matching for iris recognition 

 

At the time when the deliverable D3.1 was written, the information on these algorithms was limited. 
The initial exploration and the development of the SHL solution showed that the iris recognition task 
required a higher workload than the speaker recognition task. More efforts to speeding up video pro-
cessing while reducing them on the optimization of the audio processing while be carried out in the next 
task T3.3 while testing for user experience. 
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The benchmarks that were studied are included below: 

• The Voice activity detection (VAD) task, in which the focus is feature extraction algorithms, 
(widely used in the speech processing application). 

• The Anisotropic smoothing task, which is a very time-consuming process when performing the 
segmentation steps of the iris recognition blocks. Additionally, this task is also used to filter the 
input image before finding the inner and output boundaries of the iris ring. 

• The Iris recognition task, which is the main process conducted in the Iris recognition module. 
This task includes a part of the ROIs selection and all the processing of these. 

3.4 Experimental setup 
The results presented in next sections were obtained by compiling the SHL modules with the GCC/g++ 
compiler version 4.8.2, Mercurium compiler version 2.0.0, and Nanox++ run-time library version 0.12a. 
The optimization level used by the compilers was set to -O2 for all benchmarks. OmpSs directives were 
added to the code to exploit the underlying SMP resources of the AEP. 

These results are basically the average of 10 executions on the AEP. Additionally, they show the speed 
up between the original code, and sequential/parallel annotated code compiled and managed by OmpSs. 

The code featuring OmpSs annotations was executed on the AEP by setting up SMP resources with the 
NX_SMP_WORKERS variable. The exploration was done with 1 or 2 worker threads, as these are the 
number of SMP resources available in the Xilinx- Zynq7000 SoC (ARM Cortex-A9). The number of 
worker threads were not set to more than 2 to avoid overload and performance degradation.  

For a more detailed analysis, traces were recorded using the Extrae library version 3.4.1, which enables 
code instrumentation. Additionally, the traces were visualized with BSC’s Paraver tool. These tools 
were used to analyze parallel code and several screenshots are shown during the text to prove its use-
fulness. 

3.5 Feature extraction module 
The feature extraction in speaker identification and in speech recognition consists in transforming the 
speech signal into a set of feature vectors. The aim of this transformation is to obtain a new representa-
tion that is more compact, less redundant, and more suitable for a statistical modelling and a calculation 
of a distance or any other kind of score. The features representation (or speech parameterizations) used 
in the speaker identification block is a cepstral representation of the speech. Figure 13 shows a modular 
representation of the algorithms used in the SHL application. The code of this module was extracted 
using the SPro toolkit. SPro is an open-source speech signal-processing toolkit which provides runtime 
commands implementing the standard feature extraction algorithms for speech and speaker recognition 
applications and a C library to implement new algorithms [17]. 

 

Figure 13. Pipeline architecture of the Cepstrum analysis algorithm. 
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The SPro toolkit code related to the cepstrum analysis is included in the sfbcep function. Such func-
tion is written to implement a sequential code and it does not take advantage of the heterogeneity and 
the multicore architectures of the AXIOM system. 

The exploration done on this module has defined which tasks of the algorithm can run concurrently and 
introduce the OmpSs directives to take advantage of the multicore architecture and the FPGA resources.  

The exploration results have revealed the possibility to process windows of 20 ms of input audio data 
in parallel. 

To process the input data in parallel, the SPro sfbcep code has been slightly modified. The two main 
changes are: 

1) Convert a set of global variables into local variables;  
2) Modify the architecture of the application to extract in parallel the input audio windows from 

the FIFO input and to write in parallel the output feature vectors on to the FIFO output. The 
FIFO input and the output are used from the original code to read/write data from/to files.   

Figure 14 shows SPro sfbcep’s architecture with the input and output FIFOs represented with “is” 
and “os” in the figure. Figure 15 shows the new architectures that enable parallel access to data: the 
input and the output data are saved on two vectors (buffArray[] and cArray[]). The green lines 
in Figure 15 indicates the tasks that can be created with the OmpSs directives, obtaining parallel pro-
cessing. The pseudocode of the feature extraction function with the OmpSs annotation is presented in 
the Appendix. 

 

 

Figure 14. The original sfbcep sequential program. 
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Figure 15. The proposed sfbcep parallel program. 

 

3.5.1 Trace of the task execution and obtained performance results 
Figure 16 shows the trace of the feature extraction module processed with two worker threads. The two 
horizontal rows of the graph are the threads running the OmpSs tasks. The different colors mean differ-
ent thread states along the execution time of the application. The red blocks show the main task, there-
fore the execution time consumed for the instructions outside the OmpSs pragma on the pseudocode. 

 
Figure 16. Paraver trace of the sfbcep program using 2 threads of the AEP. 

 
The magenta blocks show the OmpSs tasks, the execution time consumed on the instructions inside the 
OmpSs pragma, and on which worker threads the tasks are processed. The yellow lines show the sched-
uling operation of the tasks. By the yellow lines is possible to see where the buffArray[] vectors 
are created and scheduled and where the taskwait pragma are set. 

Table 4 shows the execution time of the feature extraction module on the AEP. The input data processed 
are three audio samples with different duration. The audio format is uncompressed PCM audio with bit 
depth of 16bits and sample rate of 16 KHz. 
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Table 4. Execution times of the feature extraction task on the AEP. 

Input 
audio 
[sec] 

Execution 
time without 

OmpSs 
pragma [sec] 

Number 
of 

OmpSs 
tasks 

1 worker thread 2 worker thread 
Execution time with 

OmpSs@SMP 
[sec] 

speedup Execution time with 
OmpSs@SMP 

[sec] 

speedup 

3 0.18 299 0.19 0.9x 0.12 1.5x 
30 1.8 2999 1.9 0.9x 1.01 1.7x 

60 3.6 5999 3.8 0.9x 2 1.8x 

 

Speedup smaller than 1x (i.e., a slowdown) appears in all the cases on which the application enriched 
with the OmpSs directives uses only 1 worker thread. This expected result is attributed to the inability 
to exploit parallelism with 1 worker only and the overhead is due to the creation and synchronization 
of tasks that is not present in the sequential execution. Speedup up to 1.8x is gained when parallelism 
is exploited with 2 worker threads. In this scenario, tasks are processed concurrently on the two SMP 
resources. 

A further increase of the speedup is expected on the final AXIOM board, in which four ARM cores are 
present, and parallelism of tasks have further opportunities for exploiting the increase in the core count. 
Task offloading to the FPGA PL using OmpSs@FPGA could also reduce the execution time consider-
ably. 

 

Figure 17. Profiling of the feature extraction module. The profile was done on the AEP using the operf and the opreport 
tools. 
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Profiling information of the feature extraction module depicted in Figure 17 shows that the Fast Fourier 
Transform (FFT) is a very time-consuming part of the application. Moreover, the pipeline structure of 
this algorithm pushes our interest to try to offload the algorithm as much as possible to the FPGA PL 
resources. This mapping operation to FPGA resources requires to define data formats and internal op-
erations in a suitable manner to enable a correct and efficient synthesis of the algorithms. This explora-
tion is carried out in collaboration with BSC’s researchers and leverages OmpSs@FPGA and Xilinx 
Vivado HLS for automating such task.  

The feature extraction module was also used to explore the possibility to parallelize with OmpSs anno-
tations the GStreamer open-source project, which is a popular framework to handle multimedia streams. 
During last year, VIMAR in close collaboration with BSC explored the possibility to speed up a 
GStreamer plug-in using both OmpSs@SMP and OmpSs@FPGA targets. This study proved the feasi-
bility of using the Nanox++ runtime system to manage threads created within the GStreamer framework 
using OmpSs. These results were presented at the GStreamer Conference 2016 [20] in Berlin together 
with the AXIOM project and the OmpSs programming model. 

3.6 Anisotropic smoothing module 
The Anisotropic Smoothing module is an image denoising technique that is aimed to preserve the edges 
of images while smoothing regions of uniform intensity. This type of filtering is usually used as a pre-
processing stage of segmentation algorithms. As such, the Anisotropic Smoothing task is a very time-
consuming workload required for the segmentation steps of iris recognition blocks. This task aims at 
filtering the ROIs recognition in frames in order to retrieve the iris contours. ROIs are filtered several 
times to retrieve precise contours and coarse contours that improve the accuracy of the normalization 
circles. Figure 18 shows an example of this filter.  

 

Figure 18. Example of execution of the anisotropic smoothing module. The original sample image is shown on the left side; 
the processed image is shown on the right side. 

The sample was processed with the anisotropic smoothing task with 100 internal iterations. 

The original code of the anisotropic smoothing is based on the OSIRIS framework [18], which is de-
veloped in C++ and available in the AXIOM project GIT server (cf. D7.2). A minimal C++ program 
based on OpenCV framework [19] was developed with the purpose of obtaining a toolset for testing the 
module in several experiments while exploring level of parallelism in algorithms. The source code of 
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the module and the toolset were shared with AXIOM partners to guarantee the reproducibility of ex-
periments. 

The initial analysis of these algorithms showed the possibility of defining several tasks during image 
processing. Basically, these algorithms consist of a loop with m iterations in which all image pixels are 
processed in two steps. In the first step, only even pixels are processed, while in the second phase odd 
pixels are processed. Pixel values modified in the two steps are defined by reading the neighbouring 
pixels inside a 3x3 kernel, as shown in Figure 19. Image pixel are processed using two insert loops that 
read and write pixels by rows and by columns. 

The underlying structure of the algorithm enables defining several tasks for processing pixels imple-
menting different levels of granularity. For instance, granularity of tasks could be 3x3 pixels at kernel 
level, at row level or at image chunks level. An important constraint is that all even pixels must be 
processed before odd pixels and vice versa.  

 

Figure 19. Section of the image during the processing of even and odd pixels.  

We explored several strategies when adding OmpSs annotations in the source code: 

• Create a task for each 3x3 kernel of pixels. If we do not consider the boundary exceptions, this 
strategy creates a number of tasks equal to the number of pixels for each iteration; 

• Create a task for each row of the image. If we do not consider the boundary exceptions, this 
strategy relies on a number of tasks equal to the double of the number of rows of the image for 
each iteration, one task for odd pixels of a row and one for even pixels of the row; 

• Create a task for processing half image pixels. This strategy creates 4 tasks for each iteration, 
two tasks for odd pixels and two for even pixels; 

The design space exploration done for this module showed that the first proposed strategy yielded a 
number of tasks with low computational footprint. Moreover, performance using the SMP resources in 
the AEP was dramatically degraded when compared to the compilation without OmpSs directives. 

The second strategy gave better results when pixels of a row were above of a given threshold. In fact, 
if the number of pixels processed are too low, the overhead introduced by task creation decreases per-
formance. For this reason, the third strategy is the best one in cases in which the number of pixels in a 
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given row of an image are too few. The best solution strongly depends on the size of the image to be 
processed. The final code will take into account these results in order to maximize performance. 

The pseudocode of the anisotropic smoothing function parallelized with OmpSs annotations is shown 
in the Appendix. 

3.6.1 Trace of the task execution and obtained performance results 
 

Figure 20 shows a chunk of the trace execution of the anisotropic smoothing function with two different 
granularities. The upper graph and the lower graph show two different tests. Horizontal axes of the two 
graphs are fixed to the same timescale. Therefore, the two graphs show the same time duration.  In the 
trace of the upper part, granularity of tasks is fixed to the row level, whereas in the lower part granularity 
is fixed to half image level. Horizontal rows of the graph correspond to threads running OmpSs tasks. 
On the other hand, different colors mean different thread states along the execution time of the applica-
tion. 

 
Figure 20. Paraver trace of the anisotropic smoothing task with two different granularities with the same timescale in hori-
zontal axes. The upper graph shows execution of the task with the granularity fixed to row level; the lower graph shows the 

execution of the task with granularity of half image level. 
 

Table 5 shows the execution time of the anisotropic smoothing module on the AEP. The input data sets 
for the experiments were two images: ROIs of 260x260 pixels obtained from the IRM, and a Full HD 
frame. The number of iterations m was fixed to 100. All internal calculations were performed using 32-
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bit floating point precision. Figure 21 shows the obtained speedups with several number of pixels pro-
cessed within tasks. 

 

 

Table 5. Execution time of the anisotropic smoothing task on the AEP.  

Input frame  Execution 
time with-

out OmpSs 
pragma 

[sec] 

Number 
of 

OmpSs 
tasks 

Granular-
ity 

Number 
of pixels 
for tasks 

1 worker thread 2 worker thread 
Execution 
time with 

Om-
pSs@SMP 

[sec] 

speedup Execution time 
with Om-

pSs@SMP 
[sec] 

speedup 

260x260 1.479 51600 half  
image  

258 2.401 0.6x 1.343 1.1x 

260x260 1.479 400 row 33540 1.519 0.9x 0.833 1.8x 
1920x1080 47.192 215600 row 1918 52.546 0.8x 26.702 1.8x 
1920x1080 47.192 400 half  

image  
1035720 47.324 0.9x 33.142 1.4x 

 

Also in this module, a further increase of performance is expected to be achieved on the final AXIOM 
board, in which four ARM cores are present, and the parallel execution of tasks could efficiently exploit 
these additional resources. 

 

Figure 21. Speedup of the anisotropic smoothing task on the AEP with 1 and 2 worker threads. Results are shown with sev-
eral task granularities, fixed by the number of pixels processed on each task. 
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3.7 Iris recognition module 
The Iris recognition module is responsible for analyzing ROIs selected in the VPM of iris recognition 
blocks. As such, this module incorporates several processing steps presented in Section 3.1.2 related to 
the Iris recognition block. The original code of this module comes from the OSIRIS toolkit, and it is 
available on the AXIOM project GIT server. The module uses a large number of functions included in 
the OpenCV library [19]. Also, the OSIRIS code was modified and customized in order to be included 
it in the SHL application.  

The analysis done on the SHL application shows that the data of each ROI extracted from the VPM 
module is independent, and can be processed using different tasks. The OmpSs programming model 
can transform the sequential execution of the video frames into tasks that can be scheduled by the 
Nanox++ runtime system by leveraging unused resources of the underlying architecture. Since these 
tasks feature a high CPU consumption, they are good candidates for both OmpSs@SMP and Om-
pSs@Cluster, and benefit from coarse-grained parallelism.  

Figure 22 shows the three main operations involved in frame processing: location and extraction of the 
ROIs (which are depicted using yellow blocks), and the processing of the two ROIs (operations indi-
cated with the green blocks). This figure also shows both sequential and parallel solutions. The pseu-
docode of the iris recognition task with OmpSs annotations is included in the Appendix. 

 

Figure 22. Execution diagram of the Iris recognition task in the sequential and parallel solutions. 

3.7.1 Trace of the task execution and obtained performance results 
The execution trace of this module is shown in Figure 23. Red boxes represent operations to locate and 
extract ROIs, the dark red and magenta boxes represent tasks used to process the ROIs that are sched-
uled into unused SMP resources. 
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Figure 23. Paraver trace of the iris recognition task using 2 threads of the AXIOM Evaluation Platform. 

Table 6 shows the execution time of the iris recognition module on the AEP. The input data used for 
the experiments were two videos: one with 8 frames, and another one with 98 frames. Both videos were 
encoded at Full HD resolution, and contained two ROIs with size of 260x260 pixels. 

 

Table 6. Execution time of the iris recognition task on the AEP.  
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98 596.5 196 590 1x 421 1.41x 
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Figure 24. Profiling of the iris recognition kernel. The profile was done in the AEP using the operf and the opreport tools. 

Also in this module, a further increase of the performance is expected when porting the code to the final 
AXIOM board. Additionally, the code also exposes enough parallelism to be offloaded to a cluster built 
from several AXIOM boards. 

Unfortunately, the high workload and complexity of the code do not enable to efficiently map tasks of 
this module into the FPGA PL resources. However, the iris recognition module incorporates eye seg-
mentation and so the anisotropic smoothing module. In Figure 24, profiling information of the iris 
recognition module shows the anisotropic function is the most resource-intensive part of iris recognition 
thus making it a good candidate for FPGA offloading. Therefore, the iris recognition module could 
create tasks that may take advantage of the underlying resources available in the nodes of the AXIOM 
cluster. 

Finally, the whole application will be again reviewed in the future for further parallelization optimiza-
tions on FPGA PL resources. For instance, operations such as max and min functions represent about 
10% of the execution time. During the coming months, we will explore the possibility of offloading 
other parts of the code in order to further increase the speedup. 
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4 App/Service Prototyping 
This activity aims at producing interactive prototypes of Apps/Services, based on the challenges ad-
dressed in the two case studies (Smart Home Living and Smart Video Surveillance), for envisioning 
solutions with an appealing user experience. 

4.1 Rapid prototyping tools for Cyber Physical Systems 
Prototyping massively interconnected objects, devices, and sensors raises equally massive challenges 
regarding the resources that will allow designers to manage the complexity of such systems, and to 
exploit the opportunities such technologies will open up. 

An unavoidable challenge in designing IoT solutions is the need of authoring environments and archi-
tectural infrastructures for supporting end-user programming and promoting tinkering. Such authoring 
environments should enable the creation of domain-specific applications, supporting designer to con-
nect IoT appliances and to specify behaviors and the presentation of information in a highly-personal-
ized manner, which should be tailored to the end-user and its context of use [21]. 

Designing for the CPSs is more complex than designing for regular web services or applications. Now-
adays, by relying on mature and consolidated design patterns and graphical frameworks, it is relatively 
easy to design beautiful user interfaces. However, users could still have a poor experience of the IoT 
products as a whole. Designing a great connected product requires a different approach to user experi-
ence [22]. 

Moreover, in AXIOM the challenges addressed by the two case studies (Smart Home Living and Smart 
Video Surveillance) rest on machine learning solutions. More into the detail, the Smart Home Living 
scenario is related to a recent domain named Interactive Machine Learning [23]; the Smart Video Sur-
veillance uses neural networks (CNN) in order to produce accurate results. Furthermore, the Smart 
Video Surveillance and the Smart Home Living Scenarios are envisioned to merge in Marketing or 
Edutainment scenarios, either of them based on Interactive Machine Learning.  

In respect to this, we must acknowledge that today there are no authoring tools for rapid prototyping of 
Apps or Services based on Interactive Machine Learning.  

4.2 Interactive machine learning 
Interactive Machine Learning is a new field, which lives at the intersection of User Experience and 
Machine Learning research. Human application of machine learning algorithms to real-world problems 
requires embedding the algorithms in software or hardware tools of some sort. Even though the form 
and the usability of these tools impact the feasibility and the efficacy of applied machine learning work, 
research at the intersection of HCI and machine learning is still a very young area. Notwithstanding 
this, as recently remarked [24], almost anyone wondering how to incorporate AI into their own business, 
creative tool, software product or design practice  -  would be better off studying this field than maybe 
any other part of the AI landscape. 

Machine learning is a powerful tool for transforming data into computational models that can power up 
user-facing applications. However, potential users of such applications have limited involvement in the 
process of developing them. 
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The intricacies of applying machine learning techniques to everyday problems have largely restricted 
their use to skilled practitioners. In the traditional applied machine learning workflow, these practition-
ers collect data, select features to represent the data, pre-process and transform the data, choose a rep-
resentation and learning algorithm to construct the model, tune parameters of the algorithm, and finally 
assess the quality of the resulting model. This assessment often leads to further iterations on many of 
the previous steps. Typically, any end-user involvement in this process is mediated by the practitioners 
and is limited to providing data, answering domain-related questions, or giving feedback about the 
learned model. This results in a design process with lengthy and asynchronous iterations, which limits 
the end-users’ ability to impact on the resulting models.        

Instead, in Interactive machine learning, learning cycles involve more rapid, focused, and incremental 
model updates than in the traditional machine learning process (see Figure 25). These properties enable 
everyday users to interactively explore the model space through trial-and-error and drive the system 
towards an intended behavior, reducing the need for supervision by practitioners. Consequently, inter-
active machine learning can empower end-users to create machine learning-based systems for their own 
needs and purposes. However, enabling effective end-user interaction with interactive machine learning 
introduces new challenges that require a better understanding of end-user capabilities, behaviors, needs 
and, first of all, rapid prototyping tools for jointly exploring the design space. 

 

Figure 25. In machine learning, people iteratively supply information to a learning system and then observe and interpret 
the outputs of the system to inform subsequent iterations. In interactive machine learning, these iterations are more focused, 
frequent and incremental than traditional machine learning. The tighter interaction between users and learning systems in 

interactive machine learning necessitates an increased focus on studying the user’s involvement in the process. 
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Prototyping tools should focus on supporting human-computer interaction in the context of creating 
machine learning systems, where users are engaged in several tasks, including choosing and training a 
learning algorithm, evaluating and comparing models, and supplying training data. The scope of rele-
vant users includes researchers applying machine learning techniques to data analysis in an application 
domain of their expertise, developers of user interfaces containing machine learning components, and 
end-users of software tools that directly engage users in controlling some aspects of a machine learning 
system, such as providing training data and evaluating trained models.  

Therefore, we decided to design a flexible and easy-to-integrate technology for prototyping CPS/IoT 
solutions based on interactive Machine Learning. To the best of our knowledge this is the first ever 
prototyping platform for such domain. 

4.3 UAPPI 
In the design of our prototyping environment, we found that the best opportunities were offered by App 
Inventor, an open source Web IDE. App Inventor for Android is a visual programming platform for 
creating Android applications. It was developed at Google Labs by an MIT team led by Hal Abelson 
[25]. Developing apps in App Inventor does not require writing classic source code. The look and be-
havior of the app is developed “visually”, using a series of building blocks for each intended component. 
The visual nature of its language reduces the syntax problems common among programming beginners 
first starting to design an app. 

A key feature of the programming environment is live programming. Code changes are immediately 
and continually reflected in a constantly running program. Liveness makes program development more 
interactive by incorporating the effects of program changes more quickly than if they are incorporated 
in the traditional edit-compile-run-test approach. The other key feature is Event-driven programming.  

Our extension of App Inventor, UAPPI, gives novices the tools to develop applications by providing 
must-have functionalities like GUI, network access and storage on databases and by incorporating the 
popular Arduino sensors and actuators. UAPPI integrates two worlds, Android and Arduino, by mean 
of a powerful and easy to learn visual programming platform. UAPPI can be understood as an extension 
of App Inventor for the Cyber-Physical world. 

UAPPI uses a Java web server to expose the web-based IDE user interface, which allows Interaction 
Designers to prototype and develop applications for the AXIOM scenarios. The projects are saved as 
soon as the user works, stored in the UAPPI server itself, and can also be exported and reimported for 
backup or sharing purposes. 

Live programming is implemented by means of a special app running on the UDOO board, the UAPPI 
Companion. Although final apps can ultimately be compiled to produce ordinary apk files, browser 
interaction during live development is accomplished by the Companion runtime, which serves as an 
interpreter for the UAPPI code. The UAPPI Companion is an app which embeds all the UAPPI com-
ponents (GUI elements, storage options, libraries, etc.) and receives the UAPPI code from the develop-
ment computer connected to the IDE (see Figure 26). The UAPPI code arranges graphical elements on 
the screen, sets variables and properties, defines procedures and event handlers. 
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Figure 26. An Interaction Designer can develop prototypes using UAPPI running on his computer’s browser, and later run 
them on the UDOO board for testing. 

UAPPI has been developed on the UDOO board since it provides the required hardware to mock the 
AXIOM scenarios: Full HD camera compatibility, microphone input, and an Arduino interface. This is 
not intended as a replacement of the AXIOM platform, which provides a different architecture: accel-
erated-computing on a cluster instead of low-computing on a single node, Linux instead of Android, 
Arduino soft-core IP instead of an ASIC chip, etc. The UAPPI comes into play for design purposes 
only. The final applications and services derived from the envisioned scenarios will be implemented on 
the final AXIOM architecture at a later stage in the project, so this tools will easy such process. 

Table 7. Arduino components available in UAPPI with the related implemented features. 

UAPPI Component Features provided 

UdooQuad Low-level Arduino API for custom analog and digital logic 
(pinMode, digitalWrite, digitalRead, analog-
Write, analogRead, delay, map, attachInterrupt, 
...) 

UdooProximitySensor HC-SR04 Ultrasonic proximity sensor (5-200cm) compatibility 

UdooThermoSensor DHT-11 and DHT-22 temperature and humidity sensors compatibility 

UdooColorSensor TCS34725 RGB color sensor compatibility 

UdooServo PWM-controlled servo motors compatibility 

 

4.3.1 Interaction with Arduino 
Easy interfacing with the Cyber-Physical world is a key objective of the AXIOM project. To achieve 
this, the board integrates an Arduino. Partner SECO is developing a soft-core Arduino IP in T6.4, and 
the Arduino UNO pinout will guarantee support for a plenty of pluggable expansion board (so-called 
“shields”). 

Arduino compatibility is very useful during the prototyping phase. It allows to easily connect sensors 
and actuators, and even mock real-world objects. For instance, the video door entry system of the Smart 
Home Living scenario can control a door lock implemented with servo motors in minutes. 
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In UAPPI, we have developed several components to control the Arduino microcontroller of the UDOO 
board. The preliminary Arduino compatibility in UAPPI is summarized in Table 7. 

4.3.2 Prototyping interactions with machine learning 
The first ML class of algorithm considered for prototyping interactions is Support Vector Machine 
(SVM). Support Vector Machine [26] is a machine learning technique used in data classification prob-
lems. Its simplicity of use, robustness and ability to generalize, has built a reputation making it one of 
the most used machine learning algorithms. It is also used by partner HERTA in the currently deployed 
version of their BioMarketing software product [27]. 

The SVM is trained by providing it some data samples. Each data sample is composed of a features 
vector and a tag. When some examples are provided, the machine computes a mapping function able to 
classify unlabeled feature vectors, never seen during the training phase. 

UAPPI provides a component, UdooSvm, which allow both the training phase and the classification 
using libsvm [28] for the underlying implementation. For the separation of concerns principle, this 
component is not aware of what the feature vectors represents or how they can be generated. Feature 
vectors can be generated by other blocks, specific to the required task, like analyzing a video or audio 
frame or reading data from some Arduino digital and/or analogic pins. 

Google Vision [29] is a framework for finding objects in photos and video using real-time on-device 
vision technology. 

The mobile face API [30] finds human faces in photos, tracks positions of facial landmarks (eyes, nose, 
and mouth) and provides information about the state of facial features -- are the subject's eyes open? 
Are they smiling? 

UAPPI integrates this library in a component, UdooVision. Using an USB camera, it can detect the 
prominent face in the frame. The component exposes values between 0 and 1 proportional to how much 
the eyes are open and how much the person is smiling (0 means closed eyes / no smile; 1 means eyes 
fully opened / full smile). 

4.4 Example 
Using this prototyping environment, in a few minutes it is possible to create a smart lamp. Winking the 
left eye, the lamp enters in “programming mode”, where it powers up an RGB LED strip proportionally 
to the smile. Winking again exits the programming mode. 
 
The programming blocks for this lamp are shown in Figure 27 depicted below. 
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Figure 27. UAPPI blocks for a lamp that can be powered up smiling in front a camera. 

 

5 Building a data set for prototyping exploration 
In order to facilitate the setting up of the selected use-case scenarios, we started to collect data that is 
going to be used for building machine learning models (e.g. Smart Home or Video Surveillance use-
cases). Additionally, it could be also used not only for improving both HERTA and VIMAR’s product 
portfolio but also for enabling research to third-party institutions. 

5.1 Photo archive for facial recognition system 
The first data set includes faces of random people that agreed to collaborate with the AXIOM project. 
These faces are needed for training and fine-tuning the deep neural networks used for demographic 
estimation, and related to HERTA’s WP3 smart marketing use-case scenario. In order to generate such 
data set, we captured pictures of random people by following the protocol defined in the Ethics Screen-
ing Report. Therefore, collected data will be anonymized, and later distributed on public repositories 
using a permissive license: OpenAIRE [31] (funded by the EC), and Zenodo [32] (funded by both 
CERN and the EC). 

Collected face images included various individuals from different backgrounds: 

• Different ages (from 8 years old to 87); 

• Different gender (male, female); 

• Different ethnicities: “white”, “asian” and “black” (Indian people and similar ethnicities were 
tagged as “white”); 

• Occlusions (glasses, sunglasses, hat/cap, scarf, hand, smoking); 

• Changing illumination conditions; 
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Initially, we planned to capture images of at least 100 persons but thanks to the agreement of people to 
participate in the experiment, we decided to extend this goal to 150 individuals to better refine the 
system. As it is known, state-of-the-art neural network models trained with deep learning techniques 
yield higher accuracy as the amount of training images is increased.  

Regarding the resolution used for capturing pictures, we selected the maximum possible resolution al-
lowed by the camera device (i.e. 4K resolution). This process was automated by means of the software 
application developed by HERTA (see Section 2.3). The application’s user interface features buttons, 
automatically manage persistence, and handle I/O to speed up the annotation/tagging of demographic 
characteristics (age, ethnicity and coordinates/location) of subjects. 

For each person stored in the AXIOM database, we captured at least 25 pictures: 

• A single very high-quality frontal image; 

• Several images, with small rotations: 6 x top, 6 x bottom, 6 x left, 6 x right (up to 30 degrees); 

• Dynamic lighting conditions: for both frontal and each rotated pose, we captured pictures using 
normal and minimal lighting. Some pictures were captured by turning the lights off or with 
poor illumination conditions (i.e. by using differently positioned lamps, directional lights, and 
colored lights); 

• Faces were partially occluded. In some cases, we invited the subject to wear glasses (different 
models/design/trademarks), sunglasses, hats/caps, scarfs, moustache/beard. We paid attention 
to not use always the same glasses/sunglasses or hats. Otherwise, the obtained neural network 
would be prone to overfitting and could not learn well how to generalize features. 

In addition to that, we captured several HD/4K videos of groups of people moving around. Generally, 
we invited 3-6 persons to appear on a single frame. These videos were recorded with the purpose of 
being used later as a validation data set for evaluating the accuracy of the trained neural network models. 
Also, they are useful for testing and optimizing the kernel’s source code on the FPGA without constantly 
relying on an external camera pointing to people. 

Finally, each picture was annotated using both a unique anonymous ID assigned to each participant and 
the number of frame within the video sequence. The subject ID will prove useful to detect possible 
errors in certain annotated person-dependent cues (such as gender or ethnicity). 

5.2 Audio recordings 
The second data set concerned the recording of audio samples, collected from the same people involved 
in the first data set. These audio samples are required for the training and testing of VIMAR’s algo-
rithms implemented for the SHL scenario. The data was collected during two sessions. 

FIRST SESSION 

The recording speaker was settled to capture: 

• Gender (female/male) 

• Age (range of ages) 
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• Participant ID  

• Time and date of the registration 

The initial target was set to 100 speakers. In order to reach this ambitious goal, we selected participants 
from a sample of students, researchers, professors, and their relatives. 

For every speaker, the following information was recorded (16-bit, 16 KHz sample, Word/Impostor): 

• Natural speech for 15 minutes (two times) for a total of 30 minutes’ sample; 

• Three registrations of 5 minutes captured during different days; 

The environment for the recording was a silent room with no background noise.  

 

SECOND SESSION 

The recording speaker was settled to capture people during their everyday work with these variables: 

• A subject working alone using his/her PC workstation, mobile devices or papers; 

• People working in a group; 

• People talking by phone or having a Skype call; 

• Events interfering with the ordinary activities: strange sound, people speaking loud or back-
ground noises. 
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6 Extra achievements 
In order to facilitate the implementation, porting and integration of the SVS and SHL scenarios devel-
oped by HERTA and VIMAR, following the protocol defined in the Ethics Screening Report, partner 
UNISI took the responsibility of building the data sets required for training models for the facial demo-
graphic analysis and speaker identification algorithms. 

UNISI shot pictures of random individual’s faces. These pictures are going to be used during month 
m26 for retraining the facial analysis CNNs developed by HERTA so they can be publicly released and 
meet the open access data policy. 

The second set of data contains the recording of audio samples, collected from the same people involved 
in the first data set, with the aim of training and validating the required models for the SHL scenario. 

Further details are available in Section 5. 

 

7 Confirmation of DoA objectives 
PLANNED DELIVERED 

DELIVERABLE:  SCENARIOS REFINEMENT 
• Scenarios refinement using the AX-

IOM CPS platform  
Already delivered in D3.1 

• Benchmark set definition Already delivered in D3.1 
• Services/system integration and ap-

pealing user experience 
Interactive prototypes production for the two 
case studies is addressed in Section 4 

DELIVERABLE: SCENARIOS PORTING 
• Porting of the SVS Application to 

the OmpSs Programming Model  
Implementation steps and results are shown 
in Section 2 

• Porting of the SHL Application to 
the OmpSs Programming Model 

Implementation steps and results are shown 
in Section 3 
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8 Conclusions 
In this deliverable, we have detailed the design decisions taken when designing and coding the required 
applications for the SVS and SHL case studies. Additionally, it also described the initial experiences 
when parallelizing the most time-consuming kernels using the directives offered by the OmpSs pro-
gramming model. The initial performance results show that by relying on OmpSs directives, it is pos-
sible to achieve a reasonable speed up in sequential kernels with minimal efforts. 

The SVS use case also involved the architectural design and training of two state-of-the-art convolu-
tional neural networks for estimating the age and gender of detected faces. It is expected that in order 
to achieve good performance results when using the OmpSs@FPGA backend, it will be necessary to 
perform low-level optimizations at the HLS level for enabling real-time performance of the convolu-
tional neural network inference engine. Significant efforts will be also needed for reducing the latency 
of the LBP kernel to the maximum extent on the PL logic, as it currently requires roughly 500ms for 
analyzing a picture with 24 simultaneous faces on the CPU cores of the Zynq-7000 SoC. In order to 
meet the target of real-time performance, these combined figures must be reduced to significantly less 
than 40 ms per frame. 

Another task that also needs to be further explored is the H.264 decoding process. It is expected that 
this task will be managed either by a third-party IP logic block or by a dedicated subset of the ARM 
Cortex A53 cores that are available on the Ultrascale+ platform. 

The experience obtained when studying the SHL scenario has led to combine several open source li-
braries to develop the required application. VIMAR’s work brought out that code parallelization re-
quires a deep understanding of the algorithms utilized, and also of the third-party code used for imple-
menting the needed libraries. 

Algorithms that have not been implemented for parallel execution normally require some modification 
to obtain good performance results before introducing OmpSs directives. One specific case is the feature 
extraction module in which the architecture and some variables have been modified. 

A detailed analysis of the granularity of the tasks created with OmpSs directives is needed in order to 
gain increase performance, as it is shown on the obtained results of the anisotropic smoothing module.  

BSC’s visualization tools have proved their high potentiality and productivity when carrying out this 
type of analysis.  

The introduction of OmpSs directives to create tasks with coarse-grained parallelism was a smart 
choice, and succeeded in obtaining speed ups with minimal efforts. This was the case of the iris recog-
nition module, and LBP cascade evaluation kernel. 

All the studies carried out in this deliverable did not involve the usage of FPGA PL resources. A pre-
liminary FPGA mapping study has just started in collaboration with BSC’s researchers. From our ex-
perience, it was immediately clear that in order to exploit those resources, an additional in-depth anal-
ysis and code modifications will be necessary. These initial unreported experiments have shown that a 
non-careful naïve mapping leads to a rapid exhaustion of the available FPGA PL resources. In the com-
ing months, this activity will focus on studying mapping of tasks to the FPGA PL using OmpSs@FPGA. 

Other publications of the project [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] are reported 
in the reference list. 
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Appendix 
 

SVS workloads 

CNN inference 
The C++ source code of the convolve operation is included below as a reference. The SGEMM opera-
tion is highlighted in bold. The auxiliary Im2Col function is a required transformation for implementing 
convolutions using the SGEMM operation. Possible additional nonlinearity to be applied after SGEMM 
is removed from the source code. 

void dnn::Convolve(const dnn::Tensor& input, const dnn::Tensor& weights, const dnn::Tensor& bias, dnn::Padding padding, 
    dnn::Stride stride, dnn::Nonlinearity nonlin, dnn::Tensor& output) 
{ 
    assert(input.num_ == 1); 
 
    // Prepare Toeplitz matrix (input with kernel deviations) 
    dnn::Tensor col; 
    Im2Col(input, dnn::Kernel(weights.width_, weights.height_), padding, stride, col); 
 
    // Prepare output 
    output = dnn::Tensor(col.width_, col.height_, weights.num_, 1); 
 
    // Carry out convolution by simple matrix multiplication 
    int spatial_dims = col.width_ * col.height_; 
    int kernel_dims = weights.channels_ * weights.height_ * weights.width_; 
    cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, 
                output.channels_, spatial_dims, kernel_dims, 
                1.f, weights.values_.data(), kernel_dims, 
                     col.values_.data(), spatial_dims, 
                0.f, output.values_.data(), spatial_dims); 
 
    if (nonlin == dnn::E_NONLIN_ID) 
    { 
        for (int c = 0; c < output.channels_; ++c) 
        { 
            int coffset_out = c * spatial_dims; 
            for (int px = 0; px < spatial_dims; ++px) 
            { 
                // Identity function (no non-linearity), just add biases 
                output.values_[coffset_out + px] += bias.values_[c]; 
            } 
        } 
    } 
 
    /* Additional non-linear functions are removed in order to keep simplicity */ 
} 

 

LBP cascade evaluation kernel 
The C++ pseudocode enclosed below includes the main LBP face detection kernel (LBPCascadeEval-
uation) in charge of evaluating the boosted cascade of features, and annotated with OmpSs directives. 
Additionally, it also shows the code of the method (FaceDetection_LBP) responsible for evaluating 
the cascade of features for each scale of the synthetic pyramid, which is generated from the input pic-
ture. It should be noted that the pseudocode, and as such, it does not include the full source code. Con-
fidential code parts protected under NDA were removed.  

 
 
#pragma omp target device(fpga,smp) copy_deps 
#pragma omp task in(scaledFrame) inout(detections) 
void LBPCascadeEvaluation(unsigned char* scaledFrame, int sstep, int swidth, int sheight, float scale, 
     float threshold, std::vector<Detection> &detections) 
{ 
    int x, y; 
 
    #pragma omp parallel for 
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    for(x = 0; x < swidth – WINDOW_SIZE; x+=2) { 
        #pragma omp parallel for 
        for(y = 0; y < sheight – WINDOW_SIZE; y+=2) 
        { 
            float score = 0.0; 
             
            for (int stage = 0; stage < NUMSTAGES; stage++) 
            { 
                // Locate central pixel in image, store horizontal and vertical steps 
                const char *filter = LBP_FILTERS[stage]; 
                uchar* p = scaledFrame + (x + filter[0]) + sstep * (y + filter[1]); 
                int stepw = filter[2]; 
                int steph = filter[3] * sstep; 
                int bp = 0; 
 
                // Build LBP pattern, comparing to the neighbors stated in the filter 
                uchar* pn = p - stepw; 
                bp |= (*pn  > *p) << 7;  pn += steph; 
                bp |= (*pn  > *p) << 6;  pn += stepw; 
                bp |= (*pn  > *p) << 5;  pn += stepw; 
                bp |= (*pn  > *p) << 4;  pn -= steph; 
                bp |= (*pn  > *p) << 3;  pn -= steph; 
                bp |= (*pn  > *p) << 2;  pn -= stepw; 
                bp |= (*pn  > *p) << 1;  pn -= stepw; 
                bp |= (*pn  > *p) << 0; 
 
                // Accumulate scores 
                score += LBP_SCORES[stage + bp]; 
                if (score < LBP_THRESHOLDS[stage]) { break; } 
            } 
             
            // If the score is greater than the threshold set by the user, the region must be classified as a face 
            if( score > threshold ) 
              detections.push_back(Detection(x / scale, y / scale, WINDOW_SIZE / scale, WINDOW_SIZE / scale, score)); 
        } 
    } 
} 
 
 
std::vector<Detection> FaceDetection_LBP(const std::vector<unsigned char>& frameIn, int width, int height) 
{ 
     std::vector<Detection> faces; 
     std::vector<unsigned char> scaledFrame; 
     std::vector<unsigned char> img2 = frameIn; 
     int swidth, sheight, sstep; 
     int img2_width = width; 
     int img2_height = height; 
     float scale; 
 
 
 
     // Process the image pyramid 
     for (int idx=0; idx < NUM_SCALES; idx++) 
     { 
         scale = LBP_SCALES[idx]; 
         swidth  = width * scale; 
         sheight = height * scale; 
 
         // Image resizing 
         scaledFrame = BilinearResize(img2, img2_width, img2_height, swidth, sheight); 
         img2 = scaledFrame; 
         sstep = swidth; 
         img2_width = swidth; 
         img2_height = sheight; 
 
         // Launch the LBP cascade evaluation kernel to detect faces 
         std::vector<Detection> detections; 
         LBPCascadeEvaluation((uchar*) scaledFrame.data(), sstep, swidth, sheight, scale, THRESHOLD, detections); 
         #pragma omp taskwait 
 
         // Insert detected faces 
         faces.insert(faces.end(), detections.begin(), detections.end() ); 
     } 
 
     return faces; 
} 
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YUV2RGB color space conversion kernel 
Enclosed below is the full source code in ANSI C of the YUV2RGB kernel parallelized using OmpSs 
annotations. The code shows two alternative kernel implementations. The first one is implemented us-
ing single-precision floating point arithmetic (yuv2rgb_fp), whereas the second uses 8 and 16 bit inte-
gers (yuv2rgb_int). 

 

/* Required for clamping color components to [0,255] range */ 
#define CLAMP(x) ((x < 0) ? 0 : ((x > 255) ? 255 : x)) 
 
 
/*  
 * YUV 4:2:0 planar NV12 format to RGBA 8:8:8:8 conversion Kernel 
 * 
 * This kernel assumes an input array "yuvframe" containing a picture  
 * with a plane of 8-bit Y samples followed by an interleaved U/V plane  
 * containing 8-bit 2x2 subsampled color difference samples. 
 * 
 * As an example, a 4x4 picture encoded in YUV 4:2:0 (NV12) should be  
 * stored in the input array as follows: 
 * 
 *          Y Y Y Y Y Y Y Y 
 *          Y Y Y Y Y Y Y Y 
 *          U V U V U V U V 
 * 
 * Thus, given a picture with WxH dimensions, the size of the "yuvframe"  
 * array must be ((W x H) + (W x H) / 2). 
 * 
 * The color conversion implemented in the kernel is designed to be  
 * executed on a CPU featuring a single-precision floating point ALU. 
 * 
 * The output RGBA 8:8:8:8 "rgbaframe" array could be then directly mapped  
 * to a texture for displaying the picture on a screen. 
 */ 
 
/* Floating point version */ 
void yuv2rgb_fp(uint8_t* yuvframe, uint32_t* rgbaframe, int w, int h) 
{ 
  int i = 0, j = 0; 
  float y, u, v; 
  float r, g, b; 
  int pitch = w * h; 
 
 
  #pragma omp taskloop grainsize(16) private(i,j,y,u,v,r,g,b) 
  for (j = 0; j < h; j++) 
  { 
    #ifdef DEBUG_ASSIGNMENT 
       if ((j==0) || (j==h-1)) printf ("%d: Executing in %d (of %d)\n", j, 
           omp_get_thread_num(), omp_get_num_threads()); 
    #endif 
 
    for (i = 0; i < w; i++) 
    { 
      /* Input pixel (YUV 4:2:0) */ 
      y = (float) yuvframe[w * j + i]; 
      u = (float) yuvframe[pitch + (j / 2) * w + i - (i & 1)]; 
      v = (float) yuvframe[pitch + (j / 2) * w + i - (i & 1) + 1]; 
       
      /* Output pixel (RGB 24 bits per pixel + alpha channel component) */ 
      r = 1.164f * (y - 16.0f) + 1.596f * (v - 128.0f); 
      g = 1.164f * (y - 16.0f) - 0.813f * (v - 128.0f) - 0.391f * (u - 128.0f); 
      b = 1.164f * (y - 16.0f) + 2.018f * (u - 128.0f); 
 
      /* Store the results in RGBA 8:8:8:8 format (opaque alpha component) */ 
      rgbaframe[w * j + i] = ((uint32_t) CLAMP(r)) << 24 |  
  ((uint32_t) CLAMP(g)) << 16 | ((uint32_t) CLAMP(b)) << 8 | 0x000000FF; 
    } 
  } 
} 
 
/* Integer version */ 
void yuv2rgb_int(uint8_t* yuvframe, uint32_t* rgbaframe, int w, int h) 
{ 
  int i = 0, j = 0; 
  uint8_t y, u, v; 
  int16_t r, g, b; 
  int pitch = w * h; 
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  #pragma omp taskloop grainsize(16) private(i,j,y,u,v,r,g,b) 
  for (j = 0; j < h; j++) 
  { 
    for (i = 0; i < w; i++) 
    { 
      /* Input pixel (YUV 4:2:0) */ 
      y = yuvframe[w * j + i]; 
      u = yuvframe[pitch + (j / 2) * w + i - (i & 1)]; 
      v = yuvframe[pitch + (j / 2) * w + i - (i & 1) + 1]; 
 
      /* Output pixel (RGB 24 bits per pixel + alpha channel component) */ 
      r = (298 * (y - 16) + 409 * (v - 128) + 128) >> 8; 
      g = (298 * (y - 16) - 100 * (u - 128) - 208 * (v - 128) + 128) >> 8; 
      b = (298 * (y - 16) + 516 * (u - 128) + 128) >> 8; 
 
      /* Store the results in RGBA 8:8:8:8 format (opaque alpha component) */ 
      rgbaframe[w * j + i] = ((uint32_t) CLAMP(r)) << 24 |  
  ((uint32_t) CLAMP(g)) << 16 | ((uint32_t) CLAMP(b)) << 8 | 0x000000FF;  
    } 
  } 
} 
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SHL workloads 

Pseudocode of the feature extraction module 
The pseudocode of the feature extraction function populated with OmpSs annotations is included below 
for reference. 

 

/* ------------------------------------------------------------------------ */ 
/* ----- int cepstral_analysis(sigstream_t *, spfstream_t *) -------------- */ 
/* ------------------------------------------------------------------------ */ 
#define BUFF 20 // Number of 20 ms windows to be processed in parallel  
int cepstral_analysis(sigstream_t *is, spfstream_t *os) 
{ 
  Initialization of all required data structures 
  /* ----- Loop on each frame ----- */ 
  while(1) 
  { 
   for(k=0; k<BUFF;k++) 
   { 

     get_next_sig_frame(is, .., buf)   // Load data in buffArray[] vector from the "is" stream 
   } 
   if (k==0)  break; 
   for(i=0; i<k;i++) 
            { 
    #pragma omp task firstprivate(i) 
    { 
   Initialization of the data structures required   
     sig_weight();               /* Weight signal */ 
     set_mel_idx();              /* mel idx init */ 
     log_filter_bank();          /* Apply the filter bank */ 
   dct();                      /* DCT process */ 
     set_lifter();               /* Liftering */ 
   for (j = 0; j < numceps; j++) 
                             { 
                                cArray[ii*(numceps+1)+j]*= *(r+j); 
     energy = sig_normalize()    /* Energy */ 
     cArray[ii*(numceps+1)+numceps] =(2.0 * log(energy)); 
     } 
   free the data structures used 
    } // PRAGMA 
   } // FOR 
    #pragma omp taskwait  
    spf_stream_write(os, &cArray[0], k);  /* Save data in cArray[] vector to “os” stream */ 
    free the data structures used 
    return(0); 
} // WHILE 

 

Pseudocode of the anisotropic smoothing module  
The pseudocode of the anisotropic smoothing function with OmpSs annotations is enclosed below. In 
order to reduce complexity, the pseudocode shows only the specific case of row-level granularity. 

 

/* ----------------------------------------------------------------------------------------------------------------------- */ 
/* ----- void processAnisotropicSmoothing ( const IplImage * pSrc, IplImage * pDst, int iterations, float lambda )-------- */ 
/* ----------------------------------------------------------------------------------------------------------------------- */ 
void processAnisotropicSmoothing ( const IplImage * pSrc, IplImage * pDst, int iterations, float lambda ) 
{ 
    Initialization of the data structures required  
    // Loop on iterations 
    for (int k = 0; k < iterations; k++) 
    {   
        // Odd pixels 
        for (int row = 1; row < image ->height - 1; row++) 
        { 
            #pragma omp task  
            { 
    for (int col = 2 - row % 2; col < image->width - 1; col += 2) 
             { 
                     Read pixels in neighbourhood of original image 
                     Compute weber coefficients 
                     Write new value of point (row, col) into the image 
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             } // FOR 
            } // PRAGMA 
        } // FOR 
        #pragma omp taskwait 
   
        // Even pixels 
        for (int row = 1; row < image ->height - 1; row++) 
        { 
            #pragma omp task  
            { 
                for (int col = 1 + row % 2; col < image->width - 1; col += 2) 
                { 
           Read pixels in neighbourhood of original image 
                    Compute weber coefficients 
                    Write new value of point (row, col) into the image              
                } // FOR 
            } // PRAGMA 
        } 
        #pragma omp taskwait 
        Copy the first and the last row on the image  
    } // End of iterations (k) 
    
    Process the borders of image 
    Copy the data in the output structure  
    Release memory 
 
} // End of function 

 

Pseudocode of the iris recognition module 
The pseudocode of the main function and the iris recognition module with OmpSs annotations is shown 
below for reference. 

 

/* --------------------------------------------------------------- */ 
/* ----- int main ( int argc, char *argv[] )---------------------- */ 
/* --------------------------------------------------------------- */ 
int main ( int argc, char *argv[] ) 
{ 
    Initialization all the data structures required  
    while (true) 
    { 
       Get a new frame from the network 
       osi.run ( frame );  // Start iris identification procedure 
    } 
#pragma omp taskwait 
Release memory 
return  
} 
 
/* --------------------------------------------------------------- */ 
/* ----- void OsiManager::run ( cv::Mat &extFrame )--------------- */ 
/* --------------------------------------------------------------- */ 
void OsiManager::run ( cv::Mat &extFrame ) 
{ 
       Detect the ROI inside the frame 
       if (frontalEyeDetector ( leftRoi, leftRectEye )) 
       { 
              Initialization of the data structures required 
              #pragma omp task  
              { 
                process the ROI (the left eye) 
              } // PRAGMA 
       } 
       if (frontalEyeDetector ( rightRoi, rightRectEye )) 
       { 
              Initialization of the data structures required 
              #pragma omp task   
              { 
                 process the ROI (the right eye) 
              } // PRAGMA 
       } 
       Release memory 
} // End of function 
 


