
Exploring Dataflow-based Thread Level Parallelism in
Cyber-Physical Systems

(invited paper)

Roberto Giorgi
Dept. Information Engineering and Math.

University of Siena, Italy
giorgi@dii.unisi.it

ABSTRACT
Smart Cyber-Physical Systems (SCPS) aim not only at integrating
computational platforms and physical processes, but also at creat-
ing larger “systems of systems” capable of satisfying multiple criti-
cal constraints such as energy efficiency, high-performance, safety,
security, size and cost.

The AXIOM project aims at designing such systems by focus-
ing on low-cost Single Board Computers (SBC), based on cur-
rent System-on-Chips (SoC) that include both programmable logic
(FPGA), multi-core CPUs, accelerators and peripherals. A dataflow
execution model, partially developed in the TERAFLUX project,
brings a more predictable and reliable execution.

The goals of AXIOM include: i) the possibility to easily pro-
gram the system with a shared-memory model based on OmpSs; ii)
the possibility of scaling up the system through a custom but inex-
pensive interconnect; iii) the possibility of accelerating a specific
function on a single or multiple FPGAs of the system.

The dataflow execution model operates at thread-level granular-
ity. In this paper the AXIOM execution model and the related mem-
ory memory model is further detailed. The memory model is key
for the execution of threads while reducing the need of data trans-
fers. The preliminary results confirm the scalability of this model.

CCS Concepts
•Computer systems organization→ Architectures; Parallel ar-
chitectures; Distributed architectures; Data flow architectures;
Embedded hardware; Reconfigurable computing; •Software and
its engineering→Multithreading;

Keywords
Thread-Level Parallelism; Dataflow; Cyber-Physical System; Scal-
ability; Distributed Shared Memory; Programming Model

1. INTRODUCTION
Cyber-Physical Systems are designed in order to provide a smooth

interaction between computers and the physical world [23], [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CF’16, May 16 - 19, 2016, Como, Italy
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4128-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2903150.2906829

CPSs have become pervasive and ubiqitous from autonomous
driving, avionics, medical devices, control systems, robotics, smart
home and they are becoming first citizens of the Internet of Things.

However, their scalability is very costly either in terms of pro-
gramming effort or in term of expensive hardwre. Programming
models borrowed from the High-Performance Computing (HPC)
domanin such as MPI or OpenCL typically require non-trivial pro-
gramming skills for achieving good performance. Simpler shared-
memory models may require the adoption of coherent interfaces
and expensive large-bandwidth interconnects such as Infiniband.

Embedded computing and high-performance computing are more
and more converging [9]. We continue to observe more affordabil-
ity of solutions initially developed for high-performance systems,
due to the continuos demand of more powerful applications at a
higher energy efficiency also in the embedded domain [9].

The AXIOM project [29], [3], [7], [13] has a primary objec-
tive of designing and manufacturing a new Single Board Computer
that aims at flexibly adapting to a number of current and future ap-
plications. The AXIOM SBC is based on FPGAs and embedded
processors, e.g. Zynq [35], [10] and its key points are: i) a fast cus-
tom interconnect for board-to-board communication and ii) an easy
programmable environment which could allow us both to off-load
code into accelerators (either soft-IP blocks or hard-IP blocks) and,
at the same time, to distribute the computation across boards.

AXIOM is an open-hardware open-source initiative. Therefore
the board is targeting performance over cost through the use of off-
the-shelf components, it is governed by a Linux operating system
and the programming model is OmpSs [6], with the aim to bring
enough simplicity for the programmer.

In order to achieve the above goals AXIOM explores a dataflow
execution model: DF-threads [16], [11], [15] can be used as a sub-
strate for an efficient data movement, while keeping the simpler
programming model based on OpenMP such as OmpSs (which in
turn enable task dataflow parallelism) [6].

This work provides the following contributions:

i. reviewing of the DF-Thread execution model in AXIOM;

ii. discussing the DF-Thread memory model (private memory,
frame memory, owner writable memory, transactional mem-
ory) as adopted in the AXIOM project;

iii. presenting extended initial data related to the scalability for
larger number of threads.

The rest of this paper is organized as follows: in Section 2 some
related work is presented; in Section 4 we recall the support for DF-
Threads and their memory model; in Section 3 we recall the pillars
of the AXIOM platform; in Sections 5 and 6 some initial experi-

295

ments is provided for larger inputs and higher number of threads.
Finally the conclusions are drawn.

2. RELATED WORK
FPGAs are largely employed in prototyping Embedded Systems

and Smart Cyber-Physical Systems. FPGAs are also a key compo-
nent for accelerating kernels in the HPC domain, as they promise a
better energy efficiency [25].

Several works have proposed solutions to address the problem of
dynamic allocation of tasks to general-purpose multi-core proces-
sors [1], or reconfigurable logic (hardware kernels) [8]. However,
such approaches have been successfully explored only on single
and multi-core super-scalar architectures, so far.

In recent systems, the large adoption of many-cores accelerators
(i.e., FPGAs, GPUs) has worsen the problem, introducing synchro-
nization issues also among different types of computing elements.
Research activity has been always active in this specific context,
providing solutions that attempt to efficiently solve the synchro-
nization problem. A more general scheduling unit helps distribute
the workload efficiently, not only among CPU cores, but also on
the specific accelerators.

Data-Flow Threads (DF-Threads [16]) offer a simple and effec-
tive solution to address the need of reducing data transfers by mov-
ing data where it is requested for a certain computation, expressed
by the DF-Thread. While most of computations can be performed
in a producer-consumer modality, there is the specific need of ac-
cessing mutable shared data. The memory model offered by DF-
Threads [16] is encompassing Transactional Memory [19], which
is currently also adopted by manufacturers such as IBM and Intel.

Data-flow execution models had been studied widely studied [36]
as they provide a simple an elegant way to efficiently move data
from one computational thread to another one [30], [31].

In the context of the TERAFLUX [28], [15], [26] and AXIOM
projects, such data-flow model [22] had been extended to multiple
nodes executing seamlessly thanks to the support of an appropriate
memory model [11], [16]. In such memory model a combination
of consumer-producer patterns [21], [20] and transactional mem-
ory [12], [14] permits a novel combination of data-flow concepts
and transactions in order to address the consistency across nodes,
where each node is assumed to be cache-coherent, i.e., like in a
classical multi-core. Data-flow models also allows the system to
take care in a distributed way of faults that may affect a node [33],
[32]: in essence a data-flow thread may be re-executed without side
effects since we retain its input before scheduling anything else on
the same core.

The AXIOM project is the context where this research is cur-
rently developed: other recent papers describe more in detail the
hardware framework [29] and the software layers [3].

3. THE AXIOM PLATFORM
The AXIOM platform is based on the following pillars (see also

Figure 1):

P1: FPGA, i.e. large Programmable Logic for acceleration of
functions, soft-IPs, implementing specific AXIOM support
for interconnects and scaling,

P2: General Purpose Cores, to support the OS and for running
parts that make little sense on the other accelerators,

P3: High-Speed, Inexpensive Interconnects to permit scalability
and deverticalise the technology, e.g., for toolchains,

P4: Open-Source Software Stack,

B2B
(Board to Board)

Dual Core
ARM A9

(866 MHz)

AXI BUS

MIO

SHARED DRAM

“O/S” DRAM

USB OTG USB 2.0

UART Gb Ethernet

SD-CARD I2C

GPIO
HDMI

Controller

AXI-MASTER AXI-SLAVE

“Glue-Logic”

Arduino
Shield

Connector

AXI-MASTER

Zynq
FPGA

Zynq
“Hard”

Off-Chip

MEM-CTRL

“FPGA Sandbox”
AXIOM-link
Connector

DSM-like
engine

FPGA acceleration

Figure 1: The detailed architecture of the single-node, relying on a
Xilinx Zynq chip or a similar SoC.

P5: Lower-Speed Interface for the Cyber-Physical world, such as
Arduino [5] connectors, USB, Ethernet, WiFi.

Below the pillars are illustrated in more in details.
[P1] In the first phase we will adopt one of the existing solu-

tions such as the Xilinx Zynq [35], (Zynq is a chip-family, the
chip can include a dual ARM Cortex-A9@1GHz, 4@6.25Gbps to
16@12.5Gbps transceivers, low-power programmable logic from
28k to 444k logic cells + 240 to 3020 KB BRAM + 80 to 2020
18x25 DSP slices, PCI express, DDR3 memory controller, 2 USB,
2 GbE, 2 CAN, 2SDIO, 2 UART, 2 SPI, 2 I2C, 4x32b GPIO, se-
curity features, 2 ADC@12bit 1Msps). The central hearth of the
board is the FPGA SoC, so that it can make possible to integrate all
the features, to provide customized and reconfigurable acceleration
of the specific scenario where the board is deployed and to provide
the substrate for board-to-board communication. In our roadmap,
we are also considering other options that may be available soon
such as the Xilinx Ultrascale+ [34].

[P2] The general purpose cores are used for supporting a num-
ber of activities such as the Operating System (or a system task) but
also whenever there is a sequential task which needs for more In-
struction Level Parallelism rather than other forms of acceleration.

[P3] To keep the cost low we are initially oriented to use the
FPGA transceivers and use standard and inexpensive (multiple)
connectors such as the SATA connectors (without necessarily use
the SATA protocol). Similar solutions had been adopted in the
FORMIC board [24].

[P4] The recent success of SBCs such as the UDOO [27] and
RaspberryPi further demonstrated the need for using open-source
software. Linux has already become a reference example of how
open-source software can widen the benefits at any level. While
there is not yet a final consensus on which parallel programming
model is best, we believe that adopting OmpSs [6] can easy the
programmability by providing techniques familiar to the HPC pro-
grammer into the Embedded Computing community.

[P5] In order to interface with the physical world the platform in-
cludes support for Arduino connectors for General Purpose I/O and
other standard interfaces such as the USB, Ethernet, WiFi. Not less
important is the capability of interfacing with sensors and actuators
or any other type of external shields as in the Arduino platform.

Moreover, DF-Threads make possible to bring together in a sin-
gle platform all those elements and tackling cross-issues such as a
better real-time scheduling: as the inputs should be available before
execution of the DF-Threads, the system is more predictable too.

296

TH4

FM

FM
FM

Figure 2: A DF-Thread is a function that expects no parameters and
returns no parameters. Communication with other DF-threads hap-
pens via data frames. Input frames are allocated in the Frame Memory
(FM) when the thread TH4 is scheduled. Output frames are generated
dynamically by thread TH4 or any of its predecessors. No jumps or
calls outside the DF-thread can happen.

BOARD1 BOARD2 ...

Linux1 Linux2

APP

Nanos++

XSM

Figure 3: The application can be launched from a single Board and
the coarse-grain thread can then rely on the XSM fine-grained threads
(called DF-threads). The DF-threads are then managed and distributed
across boards through the XSM layer.

4. THREAD MANAGEMENT
A Dataflow Thread (DF-Thread) follows Jack Dennis’ principle

of “initiating an activity in presence of the data it needs to perform
its function” (Figure 2).

General paradigms to manage threads can lead to good perfor-
mance, such as in the case of P-threads, Cilk, OpenMP. However,
these models suffer performance penalties when synchronization
and distribution of data is not managed properly [6]. By re-organizing
the execution is such a way the threads follow more closely the data
flow of the program, such as with DF-Threads, better scalability
can be achieved [16].

In AXIOM we use a double level of thread granularity: the OmpSs
programming model generated coarser grain dataflow threads in
the Nanos++ runtime environment (Figure 3). At a lower level the
threads are further partitioned in finer grain DF-Threads.

DF-Threads are best supported in hardware through the use of a
Distributed Thread Scheduler [17] (DTS). The DTS tries to solve
the following challenges:

• at the system level, all the available resources and the health-
iness of the whole system must be considered in a distributed
fashion: if a part breaks the remaining of the system should
continue to work [32];

• at low-level, the fine-grain threads coming from the adoption
of the data-flow execution model must be distributed across
the computing elements (CPUs, FPGAs).

This means to understand at run-time what is the best resource
assignment (scheduling/mapping on CPU or reconfigurable HW) to
a task (or thread), according to multiple goals (e.g., performance/QoS,
power consumption minimization, thermal hotspots). The policies

TH2

TH4

FM

TH1

TH3

t

Figure 4: Frame Memory can also be used to collect outputs from
several threads. Each DF-thread know beforehand the offset where it
is supposed to write, no mutual exclusion is necessary during the write
process.

t

TH4

PM

TH4 …

Figure 5: Private Memory (PM). A single DF-thread may allocate
and release a chunk of memory for its own needs. Such memory is only
visible to the thread TH4.

should operate effectively both in a single application and a mixed
workload scenario. The scheduler can be further extended to en-
able it distributing fine-grain threads across the different boards or
MPSoCs.

In order to reduce the thread management overhead, the DTS
needs to be accelerated in hardware, by mapping its structure into
the FPGA. The hardware thread support is represented in Figure 1
by the eXtended Shared Memory (XSM) block. Standard high-
speed and low-latency interconnections (e.g., PCIe 3.0) may pro-
vide enough bandwidth, but the exact interconnects is under explo-
ration [29].

The DF-Thread Memory Model (DFTMM for short) relies on
the fact that in shared-memory systems (even in the non-coherent
case) the memory is used to implement the communication among
threads. Therefore, we can identify the following thread communi-
cation patterns:

• “N-to-1”: we have N threads producing data that will be con-
sumed later on by a single thread; this is a classical producer-
consumer pattern; in order to implement this, we associate a
“frame” of memory taken from a logical region that we call
“Frame Memory” or FM (Figure 4);

• “1-to-1”: we use this to indicate self-communication, i.e., the
same thread is consuming a large portion of dynamically al-
located private memory; we call the memory from this region
“Private Memory” or PM; this is also known in the literature
as Thread-Local Storage or TLS (Figure 5);

• “1-to-N”: communication is managed through Frame Mem-
ory; a common case is the in-place-update when a single
writer wishes to make available, e.g., an array element to
several consumers shortly: we suggest to manage this case
through the distribution of a pointer to the element (which re-
sides in a certain frame that could be garbage collected later

297

TH6

TH4

OWM

TH5

t

TH7 TH7 …

Figure 6: A single thread writes in a DF-Thread private memory
(Frame/OWM Memory). Data is only visible to the consumer DF-
Threads once they start (and after the producer finishes)

TH2

TM

TH1

t

TH2
…

Figure 7: Several threads write and read from a (mutable) shared
memory Transactional Memory (TM). Data is managed through TM
conflict detection and restart mechanisms of typical TM. This can be
seen as a special case of OWM.

on; as of a similar definition introduced by prof. Ian Watson,
we call this Owner Writable Memory (OWM) (Figure 6).

• “N-to-N”: in the case when a mutable shared state is nec-
essary for the computation, we rely on the compiler capa-
bility to identify such code and use as basic mechanism the
atomic transactions provided by the Transactional Memory
[19], [18] or TM. Also note that this kind of state based
computation could be theoretically seen as a special case of
OWM (Figure 7);

We believe that there is a very good potential of supporting trans-
actions through the basic mechanisms provided by our DTS, how-
ever such contribution is outside the scope of this paper, hence will
not discussed further here. One important implication of this mem-
ory model is that we are not necessarily implying hardware co-
herency, but the system is assumed to be consistent under a correct
program (protection mechanisms may be activated through classi-
cal page-protection bits).

In order to make possible the transfer of the data from one board
to the other (each board has its own separate address space) we map
a predefined region of shared memory on the same virtual address
on each node (Figure 8). Such memory is then managed physically
by remote-DMA mechanisms.

The aim of the AXIOM project is also towards an energy-efficient
improvement of the performance of applications, along with ben-
efits in terms of modular scalability of the platform. In the next
sections we will describe the first experiments (see Section 6).

5. METHODOLOGY
The architectural design has been first carried out by using the

COTSon simulator [4]. COTSon can model the main AXIOM com-

Virtual memory layout

Paged

(Private)
Linux

KernelSpace

Shared
Segment

Paged

Virtual memory layout

Physical memory
layout

Not paged

(Private)
Linux

UserSpace

Node j

Shared
Segment

Same Virtual
Addresses

(Private)
Linux

UserSpace

0

High
addresses

(Private)
Linux

KernelSpace

0

High
addresses Not paged

0

Physical memory
layout

High
addresses

Node k

Figure 8: Virtual Memory Mapping in the AXIOM platform. A
shared segment is reserved in the address space of each board. Such
segment is not paged in order to make data movement across boards
faster.

Core1

CoreN

(GPU)

I/O
hub

PL

HIGH SPEED
TRANCEIVERS MC

XSM

MEM
…

…

SoC1

Core1

CoreN

(GPU)

I/O
hub

PL

HIGH SPEED
TRANCEIVERS MC

XSM

MEM
…

…

SoC2

Core1

CoreN

(GPU)

I/O
hub

PL

HIGH SPEED
TRANCEIVERS MC

XSM

MEM
…

…

SoC3

Core1

CoreN

(GPU)

I/O
hub

PL

HIGH SPEED
TRANCEIVERS MC

XSM

MEM
…

…

SoC4

Figure 9: AXIOM Scalable Architecture. An instance consisting of
four boards, each one based on the same System-on-Chip (SoC). GPU is
an optional component. MC=Memory Controller. PL=Programmable
Logic. XSM=eXtended Shared Memory

ponents of Figure 9. In particular, the key parameters of the mod-
eled cores are described in Table 1.

Table 1: Multicore architectural parameters.
Parameter Description
SoC 4-cores connected by a shared-bus, IO-hub, MC,

high-speed transceivers
Core 1GHz, in-order superscalar
Branch Predictor two-level (history length=14bits, pattern-history ta-

ble=16kB, 8-cycle missprediction penalty)
L1 Cache Private I-cache 32 KB, private D-cache 32 KB, 2

ways, 3-cycle latency
L2 Cache Private 512 KB, 4 ways, 5-cycle latency
L3 Cache Shared 4MB, 4 ways, 20-cycle latency
Coherence protocol MOESI
Main Memory 1 GB, 100 cycles latency
I-L1-TLB, D-L1-TLB 64 entries, full-associative, 1-cycle latency
L2-TLB 512 entries, direct access, 1-cycle latency
Write/Read queues 200 Bytes each, 1-cycle latency

The simulator has been extended to support DF-Threads [16].
This means that the simulator is also modeling the Distributed Thread
Scheduler [17], which is implemented on the Programmable Logic
through the block XSM (eXtended Shared Memory) of Figure 9.

As for the interconnects among SoCs, we are currently exploring
several options as offered by the latest technologies. In the COTSon
simulator we are performing limit-study experiments assuming that
we can achieve enough bandwidth and low latency at a reasonable
cost. This part is explored in detail within the AXIOM project, but
will not be illustrated here.

298

Speedup (t1/tN)

No. of SoCs

(4) (8) (16) (No. of Cores)

1

2

4

1 2 4

size=1600 size=1280 size=1000

size=800 size=640 size=500

size=400 size=320 size=250

size=200 size=160

Figure 10: Strong Scaling for benchmark Dense Matrix Multiplica-
tion - Square Matrices - Matrix size varies: 160 to 1600 by increment-
ing of a factor approximately cubic root of 2 - Block size is constant and
equal to 10. The time used for calculating the speedup accounts only
for the User Time (without Kernel Time).

5.1 Matrix Multiplication Benchmark
We selected the Matrix Multiplication kernel to test the perfor-

mance evaluation infrastructure and to verify the feasibility of sup-
porting DF-Threads on the AXIOM platform.

The Matrix Multiplication benchmark has the following charac-
teristics:

• Blocked matrix multiplication using the classical 3 nested
loops algorithm.

• Square matrices of size n×n, where n = 200,250,320,400,
500,640,800,1000,1280,1600.

• Block size b = 10.

Since the number of operations is O(n3), the size n of the matrix
has been chosen in such a way that the cubed size of each number
of the size sequence is approximately the double of the cubed size
of the previous number, i.e., 2503 ≈ 2× 2003 and so on. This is
useful to perform the weak scaling tests (Figure 11).

The DF-Threads are generated in such a way that each thread
performs the matrix multiplication of each block, therefore we can
expect a number of threads equal to n/b.

6. EXPERIMENTS
We performed classical strong scaling and weak scaling tests to

verify that the proposed paradigm can permit the distribution of
the threads. With the strong scaling test, we increase the number
of SoCs (for simplicity we refer to the single SoC as if it were a
board) and we want to verify if the speedup t1/tN (being t1 the time
to execute the program on a single SoC and tN the time to exe-
cute the program on N SoCs) is close to the ideally linear speedup
(Figure 10).

With the weak scaling test, we increase both the number of SoCs
and the quantity of work to be executed, in the same proportion.

As explained in the Subsection 5.1, the number of operations
varies as O(n3) where n is the size of the square matrix. Therefore,
we have to increase the size of the matrix by a factor 3

√
2, as we

increase the number of SoCs in order to perform the weak scaling
tests (Figure 11). In the latter case, the ideal curve is a horizontal
line with value 1, which (ideally) means that as we increase the
quantity of work and the SoCs (in the same proportion) the time

No. of SoCs

(4) (8) (16) (No. of Cores)

Speedup (t1/tN)

0.5

1

2

1 2 4

size=400

size=320

size=250

size=200

size=160

Figure 11: Weak Scaling for benchmark Dense Matrix Multiplication
- Square Matrices - Matrix size varies: 160,200,250,320,400 (to keep
the work almost constant on each core/SoC) - Block size is constant and
equal to 10. The time used for calculating the speedup only accounts
User Time (without Kernel Time).

tN equals the time t1, i.e., the scaled systems keeps up with the
increased volume of data.

As we can see in Figure 3, as the number of SoCs is increased
from 1 to 2 and then 4, the scalability is good enough (close to
ideal), especially for higher matrix sizes. In fact, for higher matrix
sizes, the number of avaialble DF-threads is also higher.

The deviation from ideal behavior is mainly due to:

• Too few DF-Threads from the program,

• Increased data movement.

Strong and weak scaling tests are therefore useful to analyze
the performance of the embedded system constituted of N SoCs.
The current results show a good potential for achieving scalability
across SoCs.

7. CONCLUSIONS
In this paper, a dataflow execution model and it memory model

has been detailed. This execution model operates at the granularity
of threads (DF-Threads) and permits to achieve good scalability
also across separate addres spaces.

The initial results show promising applicability also in the do-
main of low-cost Smart Cyber-Physical Systems.

Acknowledgments
This work is partly supported by the European Projects TERAFLUX
(id. 249013), AXIOM (id. 645496), HiPEAC (id. 687698).

8. REFERENCES
[1] W. Ahmed, M. Shafique, L. Bauer, and J. Karlsruhe.

Adaptive resource management for simultaneous
multitasking in mixed-grained reconfigurable multi-core
processors. In Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2011 Proceedings of the 9th
International Conference on, pages 365–374, Oct 2011.

[2] R. Alur. Principles of Cyber-Physical Systems. The MIT
Press, 2015.

[3] C. Alvarez et al. The AXIOM software layers. In IEEE
Proceedings of the 18th EUROMICRO-DSD, pages 117–124,
Aug. 2015.

299

[4] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and
D. Ortega. COTSon: infrastructure for full system
simulation. SIGOPS Oper. Syst. Rev., 43(1):52–61, 2009.

[5] M. Banzi. Getting Started with Arduino. Make Books -
Imprint of: O’Reilly Media, Sebastopol, CA, 2008.

[6] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell,
R. Badia, E. Ayguade, and J. Labarta. Productive cluster
programming with OmpSs. Euro-Par 2011 Parallel
Processing, pages 555–566, 2011.

[7] P. Burgio, C. Alvarez, E. AyguadÃl’, A. Filgueras,
D. JimÃl’nez-GonzÃąlez, X. Martorell, N. Navarro, and
R. Giorgi. Simulating next-generation cyber-physical
computing platforms. Ada User Journal, 36(4):259–263,
2015.

[8] J. Clemente, V. Rana, D. Sciuto, I. Beretta, and D. Atienza.
A hybrid mapping-scheduling technique for dynamically
reconfigurable hardware. In Field Programmable Logic and
Applications (FPL), 2011 International Conference on,
pages 177–180, Sept 2011.

[9] M. Duranton, K. De Bosschere, A. Cohen, J. Maebe, and
H. Munk. HiPEAC Vision 2015.

[10] A. Filgueras, D. Jiminez, C. Alvarez, X. Martorell, J. Langer,
J. Noguera, and K. Vissers. Coarse-Grain Performance
Estimator for Heterogeneous Parallel Computing
Architectures like Zynq All-Programmable SoC. In FSP,
Sept. 2015.

[11] R. Giorgi. TERAFLUX: Exploiting dataflow parallelism in
teradevices. In ACM Computing Frontiers, pages 303–304,
May 2012.

[12] R. Giorgi. Accelerating haskell on a dataflow architecture: a
case study including transactional memory. In CEA, pages
91–100, feb 2015.

[13] R. Giorgi. Scalable embedded systems: Towards the
convergence of high-performance and embedded computing.
In Proceedings of the 13th IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing (EUC
2015), pages 148–153, Oct. 2015.

[14] R. Giorgi. Transactional memory on a dataflow architecture
for accelerating haskell. WSEAS Trans. on Computers,
14:794–805, 2015.

[15] R. Giorgi et al. TERAFLUX: Harnessing dataflow in next
generation teradevices. Microprocessors and Microsystems,
38(8, Part B):976 – 990, 2014.

[16] R. Giorgi and P. Faraboschi. An introduction to df-threads
and their execution model. In IEEE MPP, pages 60–65, oct
2014.

[17] R. Giorgi and A. Scionti. A scalable thread scheduling
co-processor based on data-flow principles. ELSEVIER
Future Generation Computer Systems, 53:100–108, 2015.

[18] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and
consistency. In Proceedings of the 31st Annual International
Symposium on Computer Architecture, ISCA ’04, pages
102–, Washington, DC, USA, 2004. IEEE Computer Society.

[19] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International Symposium on
Computer Architecture, ISCA ’93, pages 289–300, New
York, NY, USA, 1993. ACM.

[20] N. Ho, A. Mondelli, A. Scionti, M. Solinas, A. Portero, and

R. Giorgi. Enhancing an x86_64 multi-core architecture with
data-flow execution support. In ACM Proc. of Computing
Frontiers, pages 1–2, May 2015.

[21] N. Ho, A. Portero, M. Solinas, A. Scionti, A. Mondelli,
P. Faraboschi, and R. Giorgi. Simulating a multi-core x86_64
architecture with hardware isa extension supporting a
data-flow execution model. In IEEE Proceedings of the
AIMS-2014, pages 264–269, Madrid, Spain, nov 2014.

[22] K. M. Kavi, R. Giorgi, and J. Arul. Scheduled dataflow:
Execution paradigm, architecture, and performance
evaluation. IEEE Transaction on Computers, 50(8):834–846,
aug 2001.

[23] E. A. Lee. Cyber physical systems: Design challenges. In
Proceedings of the 2008 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing, ISORC ’08,
pages 363–369, Washington, DC, USA, 2008. IEEE
Computer Society.

[24] S. Lyberis, G. Kalokerinos, M. Lygerakis, V. Papaefstathiou,
D. Tsaliagkos, M. Katevenis, D. Pnevmatikatos, and
D. Nikolopoulos. Formic: Cost-efficient and scalable
prototyping of manycore architectures. In
Field-Programmable Custom Computing Machines (FCCM),
2012 IEEE 20th Annual International Symposium on, pages
61–64. IEEE, 2012.

[25] M. Milutinovic, J. Salom, N. Trifunovic, and R. Giorgi.
Guide to DataFlow Supercomputing. Springer, Berlin, DE,
Apr 2015.

[26] A. Mondelli, N. Ho, A. Scionti, M. Solinas, A. Portero, and
R. Giorgi. Dataflow support in x86_64 multicore
architectures through small hardware extensions. In IEEE
Proceedings of DSD, pages 526–529, August 2015.

[27] E. Palazzetti. Getting Started with UDOO. Packt Publishing,
2015.

[28] M. Solinas et al. The TERAFLUX project: Exploiting the
dataflow paradigm in next generation teradevices. In DSD,
pages 272–279, 2013.

[29] D. Theodoropoulos et al. The AXIOM project (agile,
extensible, fast i/o module). In SAMOS, July 2015.

[30] L. Verdoscia, R. Vaccaro, and R. Giorgi. A clockless
computing system based on the static dataflow paradigm. In
Proc. IEEE Int.l Workshop on Data-Flow Execution Models
for Extreme Scale Computing (DFM-2014), pages 30–37,
aug 2014.

[31] L. Verdoscia, R. Vaccaro, and R. Giorgi. A matrix multiplier
case study for an evaluation of a configurable
dataflow-machine. In ACM CF’15 - LP-EMS, pages 1–6,
May 2015.

[32] S. Weis et al. Architectural support for fault tolerance in a
teradevice dataflow system. Springer Int’l Journal of Parallel
Programming, pages 1–25, May 2014.

[33] S. Weis, A. Garbade, J. Wolf, B. Fechner, A. Mendelson,
R. Giorgi, and T. Ungerer. A fault detection and recovery
architecture for a teradevice dataflow system. In IEEE
DFM), pages 38–44, oct 2011.

[34] Xilinx Inc. Xilinx UltraScale Architecture.
[35] Xilinx Inc. Zynq Series.
[36] F. Yazdanpanah, C. Alvarez-Martinez, D. Jimenez-Gonzalez,

and Y. Etsion. Hybrid dataflow/von-neumann architectures.
IEEE Trans. on Parallel and Distrib. Systems,
25(6):1489–1509, June 2014.

300

