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ABSTRACT

Future exascale machines will require multi–/ many-core ar-
chitectures able to efficiently run multi-threaded applica-
tions. Data-flow execution models have demonstrated to be
capable of improving execution performance by limiting the
synchronization overhead. This paper proposes to augment
cores with a minimalistic set of hardware units and dedicated
instructions that allow efficiently scheduling the execution of
threads on the basis of data-flow principles. Experimental
results show performance improvements of the system when
compared with other techniques (e.g., OpenMP, Cilk)1.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]: Parallel Architectures;
C.1.3 [Other Architecture Styles]: Dataflow
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Many-core, multi-core, dataflow.

1. INTRODUCTION
Data-flow computing is a well known paradigm that is

capable of taking advantage of the full parallelism offered
by multi–/ many-core systems [2, 3]. In the data-flow exe-
cution model, a directed graph represents the flow of data
among the computation activities (e.g., fine-grain threads).
These activities are performed once all the required inputs
become available. Research works proposed several ways to
formalize this model of computation [1,9]. Recently, the ar-
chitectural exploitation has been investigated as well [2–4].
This paper proposes the enhancement of a x86 64 multi-core
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architecture with a small set of functional units and instruc-
tions (Hardware Resource Manager – HRM) that support
the scheduling of fine-grain threads on the basis of data-flow
principles.

1.1 System overview
In our work we consider a computing system organized in

the following manner: a scalable interconnection medium is
used to connect a set of Compute Clusters (CCs), which ex-
hibit an internal organization similar to [2] with a 2-channels
shared bus interconnection. Each core is enhanced with a
functional unit that executes instructions for synchronizing
the data-flow threads. All these units exchange informa-
tion with a centralized module connected to the shared bus
(see figure 1). Our data-flow execution model is designed in
such a way it can spawn a very high number of concurrent
fine-grain threads (Data-Flow Threads – DFTs) [5, 6], each
of them composed of few tens of instructions. Load oper-
ations of input data are performed at the beginning of the
execution, while store operations of values for other threads
are performed at the end. Each DFT owns a Synchroniza-
tion Counter (SC) and a special memory region called Frame
Memory Block (FMB) that stores the input values for the
execution. A DFT becomes ready for the execution when-
ever all the required inputs become available (SC = 0). The
interaction with HRM units and the DFT code is supported
by four special instructions (T*64) [10].

2. HARDWARE RESOURCE MANAGER
A Local Scheduling (LS) unit is embedded in each core

and directly communicates with the Central Scheduling (CS)
unit. LS units are responsible for managing the T*64 in-
structions, allocating/de-allocating resources for the DFTs,
and performing memory accesses to the FMBs. The role
of the CS unit is that of distributing the workload among
the cores. The LS unit is composed of three functional
blocks. The LS Logic Block contains a set of finite state
machines, each devoted to handle messages related to a spe-
cific T*64 instruction. Messages are sent/received through
a couple of registers (Sent MsgHandler and Recv MsgHan-

dler registers respectively). The interaction between the LS
Logic Block and the bus interface is mediated by read/write
FIFO queues. The local scheduling unit has a Ready Thread
Block for keeping information regarding the DFTs marked
as ready for the execution. This block contains a prefetcher
connected to a private cache memory that ready DFTs use
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Figure 1: The internal organization of the Hardware Resource Manager (HRM).

to store their FMBs. The prefetcher accesses to the inter-
connection bus through the bus interface, which uses a sep-
arated communication channel (Ch-1 in figure 1) w.r.t. the
standard core. Since one DFT at a time can be executed
by the core, pointers to the instructions and the FMB (IP
and FP registers) are integrated in the Ready Thread Block.
Finally, a write buffer is added to each LS unit aiming at im-
proving performance. Three functional blocks compose the
CS unit. A memory management unit (FMB-MMU) de-
voted to the FMBs allows to correctly address DFT’s data
structures in the main memory. This unit contains a set
of registers that point to the base address of three global
data structures: the Pending Thread Table – PTT (a table
which entries store hIP,SCi tuples, where IP is the instruc-
tion pointer of the thread), the Preload Queue – PLQ (a
queue that keeps track of the threads ready for the execu-
tion), and the Free Frame Queue – FFQ (a queue that keeps
track of the free frame memory blocks). PLQ and FFQ also
have tail and head dedicated management registers. The
CS unit has a FMB cache memory to make FMB accesses
faster. All the operations performed by the CS unit are gov-
erned by the CS Logic Block which contains a finite state
machine and two registers for managing incoming (Recv Ms-

gHandler) and outgoing (Sent MsgHandler) messages on the
shared bus. This finite state machine has four subsets of
states, each devoted to handle the messages that are related
to a specific T*64 instruction. Finally, a Core Load (CL)
data structure, holding the number of DFTs associated to
each compute core, allows to distribute the workload. Due
to the limited storage space available in the CS unit, all the
data structures are mapped on the main memory 2.

3. EVALUATION
We evaluated the performance of the proposed architec-

ture using the COTSon simulation framework [7, 8]. In or-
der to simulate LS and CS units, we extended the set of
components available in simulation framework. For the ex-
periments we considered a system running at near 1GHz
equipped with a L1 (32KB + 32KB for instruction and data
caches) and L2 (512KB) cache memories for each core. In
order to correctly simulate the system we also estimated
the latency of the T*64 instructions3. The performance
have been evaluated resorting to the Recursive Fibonacci

Sequence (RFS) and a Block Matrix Multiplication (BMM)

2
PTT, FFQ, PLQ, and the frame memory blocks.

3
With the default execution we used specific latencies for each T*64 instruction,

with the optimistic execution all the latencies are set equal to 1 cycle.
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Figure 2: BMM – normalized execution speedup (input 256).

applications. We compared T*64 execution with OpenMP
and Cilk execution. Our results show that the choice of
deploying a hardware scheduler is most effective when the
number of running threads increases. Considering the BMM
(figure 2), the speedup is improved up to 16 times the single
core execution, and it is twice the OpenMP and Cilk results
when executing with 32 cores. We also estimated the area
overhead: the HRM represents the 3.4% of the overall cache
memory area (L1 + L2 caches). This demonstrates the ben-
efits of adopting our design: higher scalability, and low area
overhead w.r.t. software scheduling approaches.
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