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Abstract—Embedded System toolchains are highly customized
for a specific System-on-Chip (SoC). When the application needs
more performance, the designer is typically forced to adopt a new
SoC and possibly another toolchain. The rationale for not scaling
performance by using, e.g., two SoCs, is that maintining most of
the operations on-chip may allow for higher energy efficiency.

We are exploring the feasibility and trade-offs of designing and
manufacturing a new Single Board Computer (SBC) that could
serve flexibly for a number of current and future applications,
by allowing scalability through clusters of SBCs while keeping
the same programming model for the SBC.

This board is based on FPGAs and embedded processors,
and its key points are: i) a fast custom interconnect for board-
to-board communication and ii) an easily programmable envi-
ronment which would allow both the off-loading of code into
accelerators (either soft-IP blocks or hard-IP blocks) and, at the
same time, the distribution of computation across boards.

A key challenge to successfully deploying this paradigm is to
properly distribute the threads across several boards without the
explicit intervention of the programmer.

In this paper we describe how to dynamically and efficiently
distribute the computational threads in symbiosis with an appro-
priate memory model to allow the system scalability, so that we
can double the performance by simply connecting two boards
without i) changing the basic hardware components (e.g., to a
different System-On-Chip) and ii) changing the programming
model to follow the vendor specific toolchain. Our approach is
to reduce data movement across boards. Our initial experiments
have confirmed the feasibility of our approach.

Index Terms—Cyber-Physical Systems; Reconfigurable Sys-
tems; Cluster Programming; FPGA Programming; Distributed
Shared Memory; Programming Model; Performance Evaluation.

I. INTRODUCTION

Traditionally, High-Performance Computing (HPC) and
Embedded Computing have quite different objectives in terms
of design, programmability and energy efficiency. However,
due to the ever increasing demand for performance, in turn
led by the need to support more powerful applications - such
as, e.g. smart video-surveillance and more in general mobile
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and Cyber-Physical System applications - those objectives
tend to adopt similar solutions [1]. ARM which traditionally
manufactured embedded processors is now entering the micro-
server arena and Intel which traditionally manufactured higher
performance products is now introducing their HPC proces-
sors, e.g. Xeon E3-1500M, into the mobile market.

In the context of the project AXIOM [2], [3], [4] we
are exploring the feasibility and trade-offs in designing and
manufacturing a new Single Board Computer that could serve
flexibly for a number of current and future applications. This
board is based on FPGAs and embedded processors, e.g. Zynq
[5], [6] and its key points are: i) a fast custom interconnect for
board-to-board communication and ii) an easy programmable
environment which could allow us both to off-load code into
accelerators (either soft-IP blocks or hard-IP blocks) and, at
the same time, to distribute the computation across boards.

AXIOM is an open-hardware open-source initiative. There-
fore the board is targeting performance over cost through the
use of off-the-shelf components, it is governed by a Linux
operating system and the programming model is OmpSs [7],
with the aim to bring enough simplicity for the programmer.

Other projects such as Montblanc, P-Socrates, SHAPES
investigated the convergence of HPC and Embedded Com-
puting. Nevertheless, efficiently scaling the performance of a
computing system while maintaining easy programmability is
still an open problem [8].

In order to have a better control of the programmable hard-
ware toolchains need to be complemented with appropriate
high level synthesis tools [9], [10].

Multi-core SoCs (MPSoCs) are now the norm, but thread
management is source of lot of inefficencies. Their manage-
ment has to consider not only the order of execution and the
time quantum per thread, but also the implications of allocat-
ing a thread on a given core. This aspect becomes critical
as the whole architecture grows in complexity, configuring
distributed computational resources, memory hierarchies, in-
terconnects. Moreover, since energy-efficiency has emerged as
a key requirement, thread management goals cannot be limited
only to the maximization of performance.

In this paper we present some initial results regarding the



distribution of threads across multiple SoCs (or SBCs): the
results demonstrate the feasibility of achieving scalability in
embedded systems by the combination of elements such as
FPGAs and concepts derived from the HPC domain, while
maintining a simpler programming model like OmpSs.

The contribution of this work are:
i) exploring the concept of ”scalable embedded system”,

while showing some initial result;
ii) indicating a way to achieve such scalability by sup-

porting special threads called Data-Flow Threads (DF-
Threads);

iii) iillustrating how this concepts are integrated in the
AXIOM project, which is focused to build a scalable
Single Board Computer.

The rest of the paper is organized as follows: in Section II
we highlight some related work; in Section III we explain why
supporting threads is becoming more and more important; in
Section IV we illustrate the pillars of the AXIOM platform; in
Sections V and VI we illustrate some experiments and finally
we conclude the paper.

II. RELATED WORK

FPGAs are largely employed in prototyping Embedded
Systems and are becoming a key component for accelerating
kernels in the HPC domain, as they promise a better energy
efficiency [11].

Concerning reconfigurable hardware platforms based on
FPGA, several works have proposed solutions to address the
problem of dynamic allocation of tasks to general-purpose
multi-core processors [12], or reconfigurable logic (hardware
kernels) [13]. However, such approaches have been success-
fully explored only on single and multi-core super-scalar
architectures, so far.

In recent systems, the large adoption of many-cores ac-
celerators (i.e., GPUs) has worsen the problem, introducing
synchronization issues also among different types of comput-
ing elements. Research activity has been always active in this
specific context, providing solutions that attempt to efficiently
solve the synchronization problem. A more general scheduling
unit helps distribute the workload efficiently, not only among
CPU cores, but also on the specific accelerators.

Data-Flow Threads (DF-Threads [14]) offer a simple and
effective solution to address the need of reducing data transfers
by moving data where it is requested for a certain computation,
expressed by the DF-Thread. While most of computations
can be performed in a producer-consumer modality, there
is the specific need of accessing mutable shared data. The
memory model offered by DF-Threads [14] is encompassing
Transactional Memory [15], which is currently also adopted
by manufacturers such as IBM and Intel.

Data-flow execution models had been studied widely studied
[16] as they provide a simple an elegant way to efficiently
move data from one computational thread to another one [17],
[18].

In the context of the TERAFLUX project [19], [20], [21]
such data-flow model had been extended to multiple nodes

executing seamlessly thanks to the support of an appropriate
memory model [22], [14]. In such memory model a combina-
tion of consumer-producer patterns [23], [24] and transactional
memory [25], [26] permits a novel combination of data-flow
concepts and transactions in order to address the consistency
across nodes, where each node is assumed to be cache-
coherent, i.e., like in a classical multi-core. Data-flow models
also allows the system to take care in a distributed way of
faults that may affect a node [27], [28]: in essence a data-flow
thread may be re-executed without side effects since we retain
its input before scheduling anything else on the same core.

The AXIOM project is the context where this research
is currently developed: other recent papers describe more in
detail the hardware framework [2] and the software layers [3].

III. THREAD MANAGEMENT

Using a general paradigm to manage threads can lead to
good performance, such as in the case of P-threads, Cilk,
OpenMP. Howevwer, these models suffer performance penal-
ties when synchronization and distribution of data is not
managed properly [7]. By re-organzing the execution is such
a way the threads follow more closely the data flow of the
program, such as with DF-Thrads, better scalability can be
achievied [14].

DF-Threads are best implemented in hardware through the
use of a Distributed Thread Scheduler [29] (DTS). The DTS
tries to solve the following challenges:

• at the system level, all the available resources and the
healthiness of the whole system must be considered in a
distributed fashion: if a part breaks the remaining of the
system should continue to work [28];

• at low-level, the fine-grain threads coming from the adop-
tion of the data-flow execution model must be distributed
across the computing elements (CPUs, FPGAs).

This means to understand at run-time what is the best
resource assignment (scheduling/mapping on CPU or recon-
figurable HW) to a task (or thread), according to multiple
goals (e.g., performance/QoS, power consumption minimiza-
tion, thermal hotspots). The policies should operate effectively
both in a single application and a mixed workload scenario.
The scheduler can be further extended to enable it distributing
fine-grain threads across the different boards or MPSoCs.

In order to reduce the thread management overhead, the
DTS needs to be accelerated in hardware, by mapping its
structure into the FPGA. The hardware thread support is rep-
resented in Figure 1 by the eXtended Shared Memory (XSM)
block. Standard high-speed and low-latency interconnections
(e.g., PCIe 3.0) may provide enough bandwidth, but the exact
interconnects is under exploration [2].

The aim of the AXIOM project is also towards an energy-
efficient improvement of the performance of applications,
along with benefits in terms of modular scalability of the
platform. In the next sections we will describe the first
experiments that enabled us to have more confidence with this
approach (see Section VI).



IV. THE AXIOM PLATFORM

The AXIOM platform is architected on the following pillars
(see also Figure 1):

P1 FPGA, i.e. large Programmable Logic for acceleration
of functions, soft-IPs, implementing specific AXIOM
support for interconnects and scaling,

P2 General Purpose Cores, to support the OS and for running
parts that make little sense on the other accelerators,

P3 High-Speed, Inexpensive Interconnects to permit scalabil-
ity and deverticalise the technology, e.g., for toolchains,

P4 Open-Source Software Stack,
P5 Lower-Speed Interface for the Cyber-Physical world,

such as Arduino [30] connectors, USB, Ethernet, WiFi.

Below we illustrate those pillars more in details.
[P1] In the first phase we will adopt one of the existing

solutions such as the Xilinx Zynq [5], (Zynq is a chip-
family, the chip can include a dual ARM Cortex-A9@1GHz,
4@6.25Gbps to 16@12.5Gbps transceivers, low-power pro-
grammable logic from 28k to 444k logic cells + 240 to 3020
KB BRAM + 80 to 2020 18x25 DSP slices, PCI express,
DDR3 memory controller, 2 USB, 2 GbE, 2 CAN, 2SDIO,
2 UART, 2 SPI, 2 I2C, 4x32b GPIO, security features, 2
ADC@12bit 1Msps). The central hearth of the board is the
FPGA SoC, so that it can make possible to integrate all the
features, to provide customized and reconfigurable accelera-
tion of the specific scenario where the board is deployed and
to provide the substrate for board-to-board communication. In
our roadmap, we are also considering other options that may
be available soon such as the Xilinx Ultrascale+ [31].

[P2] The general purpose cores are used for supporting a
number of activities such as the Operating System (or a system
task) but also whenever there is a sequential task which needs
for more Instruction Level Parallelism rather than other forms
of acceleration.

[P3] To keep the cost low we are initially oriented to
use the FPGA transceivers and use standard and inexpensive
(multiple) connectors such as the SATA connectors (without
necessarily use the SATA protocol). Similar solutions had been
adopted in the FORMIC board [32].

[P4] The recent success of SBCs such as the UDOO [33]
and RaspberryPi further demonstrated the need for using
open-source software. Linux has already become a reference
example of how open-source software can widen the benefits
at any level. While there is not yet a final consensus on which
parallel programming model is best, we believe that adopting
OmpSs [7] can easy the programmability by providing tech-
niques familiar to the HPC programmer into the Embedded
Computing community.

[P5] In order to interface with the physical world the
platform includes support for Arduino connectors for General
Purpose I/O and other standard interfaces such as the USB,
Ethernet, WiFi. Not less important is the capability of inter-
facing with sensors and actuators or any other type of external
shields as in the Arduino platform.

Moreover, DF-Threads make possible to bring together in
a single platform all those elements and tackling cross-issues
such as a better real-time scheduling: as the inputs should be
available before execution of the DF-Threads, the system can
be more predictable too.

V. METHODOLOGY

In order to flexibly fit the need of designing both the
hardware and the software of the AXIOM system, we used
the COTSon simulator [34]. COTSon can model the main
AXIOM components of Figure 1. Among the important fea-
tures, COTSon performs full-system simulation: the designer
can run, e.g., an off-the-shelf Linux distribution and model in
a decoupled way the desired functionalities and their timing
behavior. This models a more realistic situation where the OS
is interacting with the user programs and includes also any
interrupts, exceptions, virtual memory management.

In particular, the key parameters of the modeled cores are
described in Table I.

TABLE I: Multicore architectural parameters.

Parameter Description
SoC 4-cores connected by a shared-bus, IO-hub, MC,

high-speed transceivers
Core 1GHz, in-order superscalar
Branch Predictor two-level (history length=14bits, pattern-history

table=16kB, 8-cycle missprediction penalty)
L1 Cache Private I-cache 32 KB, private D-cache 32 KB, 2

ways, 3-cycle latency
L2 Cache Private 512 KB, 4 ways, 5-cycle latency
L3 Cache Shared 4MB, 4 ways, 20-cycle latency
Coherence protocol MOESI
Main Memory 1 GB, 100 cycles latency
I-L1-TLB, D-L1-TLB 64 entries, full-associative, 1-cycle latency
L2-TLB 512 entries, direct access, 1-cycle latency
Write/Read queues 200 Bytes each, 1-cycle latency

Additionally, the simulator has been extended to support
DF-Threads [14]. This means that the simulator is also
modeling the Distributed Thread Scheduler [29], which is
implemented on the Programmable Logic through the block
XSM (eXtended Shared Memory) of Figure 1.

As for the interconnects among SoCs, we are currently
exploring several options as offered by the latest technolo-
gies. In the COTSon simulator we are performing limit-study
experiments assuming that we can achieve enough bandwidth
and low latency at a reasonable cost. This part is explored in
detail within the AXIOM project, but will not be illustrated
here.

A. Matrix Multiplication Benchmark

We selected the Matrix Multiplication kernel to test the per-
formance evaluation infrastructure and to verify the feasibility
of supporting DF-Threads on the AXIOM platform.

The Matrix Multiplication benchmark has the following
characteristics:

• Blocked matrix multiplication using the classical 3 nested
loops algorithm.

• Square matrices of size n × n, where n =
200, 250, 320, 400, 500, 640, 800.

• Block size b = 10 and b = 25.
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Fig. 1: AXIOM Scalable Architecture. An instance consisting of four boards, each one based on the same System-on-Chip (SoC). GPU is
an optional component. MC=Memory Controller. PL=Programmable Logic. XSM=eXtended Shared Memory

Since, in this case, the number of operations is O(n3),
the size n of the matrix has been chosen in such a way
that the cubed size of each number of the size sequence is
approximately the double of the cubed size of the previous
number, i.e., 2503 ≈ 2 × 2003 and so on. This is useful to
perform the weak scaling tests (Figure 4).

The DF-Threads are generated in such a way that each
thread performs the matrix multiplication of each block, there-
fore we can expect a number of threads equal to n/b.

VI. EXPERIMENTS

In order to verify the feasibility of running programs not
only on the single board but also on multiple boards thanks
to the adopted programming model (OmpSs [7]) and the un-
derlying runtime system a key point is being able to schedule
and execute the generated DF-Threads across the boards. This
implies that the memory which is local to each node (see
Figure 1) has to be managed in such a way that it appears as
shared to the rest of the SoCs/boards.

The XSM block of Figure 1 serves to that goal by book-
keeping the DF-Threads and by appropriately moving the data
where is needed.

We performed two classical tests to verify that the proposed
paradigm can permit the distribution of the threads:

• Strong Scaling tests,
• Weak Scaling tests.

With the strong scaling tests, we increase the number of SoCs
(for simplicity we refer to the single SoC as if it were a board)
and we want to verify if the speedup t1/tN (being t1 the time
to execute the program on a single SoC and tN the time to
execute the program on N SoCs) is close to the ideally linear
speedup (Figures 2, 3 and 5).

With the weak scaling tests, we increase both the number
of SoCs and the quantity of work to be executed, in the same
proportion.

As explained in the Subsection V-A, the number of op-
erations varies as O(n3) where n is the size of the square
matrix. Therefore, we have to increase the size of the matrix
by a factor 3

√
2, as we increase the number of SoCs in order to

perform the weak scaling tests (Figure 4). In the latter case, the
ideal curve is a horizontal line with value 1, which (ideally)
means that as we increase the quantity of work and the SoCs
(in the same proportion) the time tN equals the time t1, i.e.,
the scaled systems keeps up with the increased volume of data.

As we can see in Figure 2, as the number of SoCs is
increased from 1 to 2 and then 4, the scalability is good enough
(close to ideal), especially for higher matrix sizes (e.g., 320).
In fact, for higher matrix sizes, the number of avaialble DF-
threads is also higher.

The deviation from ideal behavior is mainly due to:
• Too few DF-Threads from the program,
• Increased data movement.

In fact, as the number of DF-Threads is equal to n/b (see
Subsection V-A), in the case of n = 200 we only have 5
threads to be assigned to the each of the SoCs; moreover,
since our SoC has 4 cores, some of the cores may remain
idle. This is visible in Figure 2 for the curve for n = 200 and
4 SoCs with a drop in the scalability. We reported the strong
scaling curves for some other values (200, 250, 320, 400) to
verify the sensitivity to the input data; in the tests of Figure 2
the block size is kept constant.

One other aspect regards the influence of the Operating
System. The curves in Figure 2 reflect the execution of only the
User part of the program. We extracted also the strong scaling
curves that reflect both the User and the Kernel instructions
(Figure 3).

As we can see, the strong scaling is affected by the OS:
all the curves of Figure 2 are now compressed towards the
bottom part of the Figure 3, as the time spent in Kernel mode
ranges from 6% to 60% in those tests. This indicates a strong
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Fig. 3: Strong Scaling for benchmark Dense Matrix Multiplication
(Square Matrices). Matrix size varies: 200,250,320,400. Block size is
constant and equal to 10. The time used for calculating the speedup
accounts for both the User Time and the Kernel Time.

need for using a full-system simulator and not neglecting the
OS activities for a proper platform design.

In the weak scaling tests of Figure 4, we observe that for
some matrix size (n = 400) we have a high efficiency, as it
was for the strong scaling tests.

However, please note that in the weak scaling tests, each
curve corresponding to three different matrix sizes for each of
the X-axis values (the number of SoCs). For example, for the
curve corresponding to n = 400 the sequence of data is: 1
SoC → n = 400, 2 SoCs → n = 500, 4 SoCs → n = 640. In
particular, for 4 SoCs the efficiency drops as it has an implied
matrix size of n = 640 and the data set is large enough to
cause a significant miss rate increase in the L2 cache (not
shown in the figures).

Finally, we explored the sensitivity to the thread granularity,
by choosing a larger block size. A larger block generates
longer DF-threads to process such matrix block. In Figure 5,
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Fig. 4: Weak Scaling for benchmark Dense Matrix Multiplication
(Square Matrices). Matrix size varies: 200,250,320,400 on each single
SoC (to keep the work almost constant on each core/SoC). Block size
is constant and equal to 10. The time used for calculating the speedup
only accounts User Time (without Kernel Time).
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Fig. 5: Effect of the thread granularity (through the block size) on
strong scaling for benchmark Dense Matrix Multiplication (Square
Matrices). Matrix size varies: 200,250,320,400. Block size assumes
values 10 and 25. The time used for calculating the speedup accounts
only for the User Time (without Kernel Time).

we analyzed the situation for three matrix sizes (n = 200,
n = 400, n = 800) and while the block size b is equal to 10
and 25.

As we can see, having larger threads implies less opportu-
nities for parallelism, as the number of DF-threads is smaller.
This is particularly evident for the curve for n = 200 and
b = 25. Moreover, there are combinations of n and b (e.g.,
n/b = 16) where the scaling is better as the number of
available threads is a multiple of the number of cores. For
larger matrix sizes (e.g. 800) as noticed, the L2 cache tend to
suffer more misses, thus affecting the performance.

Strong and weak scaling tests are therefore useful to analyze
the performance of the embedded system constituted of N
SoCs. The current results show a good potential for achieving
scalability across SoCs.



VII. CONCLUSIONS

In this paper, we advocate the deployment of Scalable
Embedded Systems. Solutions studied in the domain of High-
Performance Computing are more and more available also in
the Embedded Computing domain.

In particular, we have shown that DF-Threads could be
deployed to permit scalability across boards, while keeping a
data-flow based interface to the OmpSs programming model,
an extension of the OpenMP programming model. We pre-
sented our experience in the context of the AXIOM project.

The availability of open-source and open-hardware plat-
forms combined with the above concepts could permit per-
formance scalability of Embedded Systems.
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