
Coarse-Grain Performance Estimator for
Heterogeneous Parallel Computing Architectures like

Zynq All-Programmable SoC

Daniel Jiménez-González∗†, Carlos Álvarez∗†, Antonio Filgueras†, Xavier Martorell∗†,
Jan Langer‡, Juanjo Noguera‡ and Kees Vissers‡

∗Universitat Politecnica de Catalunya
†Barcelona Supercomputing Center

Email: {daniel.jimenez,carlos.alvarez,antonio.filgueras,xavier.martorell}@bsc.es
‡Xilinx USA

Email: {jan.langer,juanjo.noguera,kees.vissers}@xilinx.com

Abstract—Heterogeneous computing is emerging as a manda-
tory requirement for power-efficient system design. With this aim,
modern heterogeneous platforms like Zynq All-Programmable
SoC, that integrates ARM-based SMP and programmable logic,
have been designed. However, those platforms introduce large
design cycles consisting on hardware/software partitioning, de-
cisions on granularity and number of hardware accelerators,
hardware/software integration, bitstream generation, etc.

This paper presents a performance parallel heterogeneous
estimation for systems where hardware/software co-design and
run-time heterogeneous task scheduling are key. The results show
that the programmer can quickly decide, based only on her/his
OmpSs (OpenMP + extensions) application, which is the co-
design that achieves nearly optimal heterogeneous parallel perfor-
mance, based on the methodology presented and considering only
synthesis estimation results. The methodology presented reduces
the programmer co-design decision from hours to minutes and
shows high potential on hardware/software heterogeneous parallel
performance estimation on the Zynq All-Programmable SoC.

I. INTRODUCTION

With the end of Dennard Scaling [7] computer architecture
has entered a new era. One main thread followed by several
architectures has been to evolve into multi- and many-core sys-
tems composed of several identical cores. Another important
trend has been the incorporation of large, specialized accelera-
tor systems (mainly evolved from the graphics ecosystem) that
efficiently execute single instruction mulitple thread codes.

However, the struggle to squeeze some performance out
of a continuously growing number of transistors per chip has,
somehow, avoided its most obvious and promising path: the
creation of a large number of very specialized accelerators
that can, on one side, be really energy efficient and, on the
other, make the work faster by eliminating software overheads.
Indeed, ASICs, so common only a few years ago, are being
progressively discarded in favor of cheaper, more general
components that have the essential advantage of short time-to-
market cycles. In this sense, new hybrid CPU-FPGA systems
can be seen as the future of heterogeneous computing. While
being roughly one order of magnitude slower that its ASIC
equivalent, FPGAs can be reprogrammed on the fly, and
adapt to changing environments. Furthermore, being tightly

integrated with general cores, those systems can retain the
programmability of common CPUs and join it with the tremen-
dous boost in performance and efficiency that characterizes
specialized hardware.

However, in order to be broadly used in the mass-market,
those systems still face two important challenges: first, a soft-
ware ecosystem that facilitates their programmability without
burdening the programmer with all the cumbersome details
(data transfers, synchronization, memory coherence...) of het-
erogeneous systems and, second, an easy and fast way to
perform a quick decision of the best mapping of all the
application components to the most adequate hardware to
compute them in a parallel heterogeneous system.

Several works have addressed the first problem and it can
be said that parallel programming models (like OmpSs [9]
and OpenMP 4.0) can be used to solve it. However the second
problem is still a barren field. Indeed, assuming that the first
step of selecting which application kernels can be computed
by the reconfigurable hardware is done by a programmer,
and generating the proper HDL code for them could be
done automatically, still remains the problem that a FPGA
bitstream generation can take several hours. After that, the
whole application should be analyzed only to find out if
the hardware-software partition, or the resources distribution
between the kernels in the FPGA, are adequate or not for
the scheduling policy of the programming model and the
heterogeneous system at hand. Any mistake in the selection
or any bad guess by the expert programmer means repeating
the whole process leading to a trial and error process composed
of several hours steps..., in addition to a unexpected parallel
heterogeneous performance.

In this paper we address those issues by presenting a
way to speed-up the process and help introduce heterogeneous
systems into everyday computation. The suggested workflow
is designed to estimate the performance of OmpSs applications
on any heterogeneous parallel architecture using the execution
time information (estimated or not) of the OmpSs tasks running
on the processing components of the target architecture. Those
heterogeneous architectures are currently target by cyber-
physical computing platforms [2], [5] that may combine cluster
of nodes with SMP, FPGAs and GPUs. Here, we focus on the

Copyright is held by the author/owner(s).
2nd InternationalWorkshop on FPGAs for Software Programmers
(FSP 2015), London, United Kingdom, September 1, 2015. 35

heterogeneous parallel performance estimation for the Zynq
All-Programmable SoC architecture, that combines ARM-
based SMP and a FPGA, and that also includes GPUs in the
next generation Zynq UltraScale+ MPSoC[20]. This workflow
integrates a simulator which implements the runtime of the
OmpSs programming model, and a shared memory coarse-
grain component (ARM cores and FPGA accelerators) archi-
tecture with local memory (BRAM) for the FPGA accelerators.
This simulation is fed by the reports obtained from the high
level synthesis tool for the timing information of the hardware
accelerators considered by the programmer and a task-based
trace generated by a sequential execution of the OmpSs
application. The framework simulates the execution of the trace
tasks in a data-flow manner as the software runtime of OmpSs
would do, considering all the components of the heterogeneous
architecture. With this, the simulator can obtain the estimated
heterogeneous parallel performance for the application kernels
(tasks) in the target system. Finally, once the best alternative
is selected based on the simulator results, the bitstream can
be effectively generated and executed in order to check the
correctness of the conclusions. This process lasts just a few
minutes or even seconds to achieve similar results than having
to generate the bitstream for each possible mapping and run
the application in the real system.

Our methodology currently considers that the programmer
is an parallel programmer that only needs to explore few hard-
ware/software codesigns, otherwise a design space exploration
strategy should be analyzed to reduce the amount of possible
solutions, like using back annotations [11], [19].

So, the contributions of the paper are as follows:

• Light coarse-grain estimation that helps the program-
mer to have a fast order-of-magintude decision of the
best hardware/software co-design on a heterogeneous
parallel system with FPGA devices, reducing the num-
ber of bitstreams to be generated.

• Heterogeneous parallel performance estimator based
on a task-based trace driven simulator that integrates
the runtime of the OmpSs programming model and a
shared memory coarse-grain component architecture,
with local memory for the hardware accelerators.

• A complete framework that avoids the need of placing
and routing each FPGA accelerator required by the
programmer annotated tasks with target FPGA.

The rest of this paper is organized as follows: Section II
presents the related work of the paper. After that section III
presents the methodology suggested, section IV its imple-
mentation and section V presents the experimental setup.
Section VI presents the results obtained. Finally, section VII
concludes the article.

II. RELATED WORK

The work presented in this paper addresses the problem of
how to use efficiently, at run-time, the hardware resources of
an heterogeneous system selecting the best among the large
amount of implementation possibilities that such a system
offers. To do so, it relies in the existence of a programming
model that allows the integrated programming of heteroge-
neous systems, predicting the performance of the applications

on those systems. Meanwhile there are several programming
models dealing with FPGA-based heterogeneous systems [15],
[6], [1], [10], [16], [8], there has been less work in the literature
regarding the performance prediction of heterogeneous appli-
cations. Indeed, most of those works cover the prediction of a
kernel performance on an FPGA [13], [14], [18] and only few
of them analyze full application performance prediction. The
RC amenability test (RAT) [12] is a system that tries to predict
the suitability of an application to be ported to an FPGA,
in order to avoid the work if the outcome is foreseeable as
non successful. Another performance prediction technique [17]
addresses the modelling of shared heterogeneous workstations
containing reconfigurable computing devices. This methodol-
ogy chiefly concerns the modelling of system level, multi-
FPGA architectures. However, it does not take into account
the selection among several different application kernels or
the interactions between them in a given parallel application.

Other works propose electronic system level timing and
power estimation that combines system-level timing and power
estimation techniques with platform-based rapid prototyp-
ing [11], [19]. However, the annotated task has to be spec-
ified in a particular language and/or has to be mapped to a
specific component of the system. In our work, the same task
can be annotated in C/C++ language with OpenMP-like task
directives, which is the standard shared memory programming
model. In addition, tasks can be annotated to be mapped, at
run-time, to different components of the heterogeneous system
depending on the scheduling policy.

To the best of our knowledge the work presented in this
paper is the only one that deals with those kernel selection
and performance prediction challenges that require a run-time
analysis of the application and the prediction of complex,
irregular task dependency execution patterns.

III. METHODOLOGY

In this section we present the methodology proposed in
this paper to reduce the developer effort to map complex
applications to heterogeneous parallel systems with FPGAs.
OmpSs programming model makes easy the programmability
of applications with kernels (pieces of code, functions or
not) that may be executed in both CPUs and FPGAs [10] as
offloaded tasks, transparently to the programmer, by writing
simple pragma directives. Note that, as commented above,
the automatic generation of the different granularities and the
architecture configurations (number of accelerators for each
kernel) is beyond of the scope of this paper contribution.
Therefore, the granularity of the tasks and target devices
where those tasks could be run should be indicated by the
programmer. The decision of where those tasks are executed
is automatically done at run-time.

Figure 1 shows an example of an OmpSs blocking matrix
multiplication. As it can be observed in the first line of the
code, the mxmBlock kernel has been annotated as it can be
executed in both FPGA and SMP. The second line of the code
specifies that this function will become a OmpSs task (with
input and output dependences) any time it is called in the
code. With these annotations, the OmpSs runtime can take
care of scheduling different instances of the kernel, when their
dependences are ready, in both resources based on availability.

36

pragma omp t a r g e t d e v i c e (fpga , smp)
pragma omp t a s k i n ([BS∗BS]A, [BS∗BS]B)\

i n o u t ([BS∗BS]C)
vo id mxmBlock (REAL ∗A, REAL ∗B , REAL ∗C)
{

i n t i , j , k ;
f o r (i =0 ; i < BS ; i ++)

f o r (k =0; k < BS ; k ++) {
REAL tmp = A[i ∗BS+k] ;
f o r (j =0 ; j < BS ; j ++)

C[i ∗BS+ j] += tmp ∗ B[k∗BS+ j] ;
}

}

vo id matmul (REAL ∗∗AA, REAL ∗∗BB, REAL ∗∗CC, i n t NB)
{

i n t i , j , k ;
f o r (k = 0 ; k < NB; k ++)

f o r (i = 0 ; i < NB; i ++)
f o r (j = 0 ; j < NB; j ++)

mxmBlock (AA[i ∗NB+k] ,BB[k∗NB+ j] ,\
CC[i ∗NB+ j]) ;

}

Fig. 1. Matrix multiplication annotated with OmpSs directives. matmul
is the blocking matrix multiplication function, and mxmBlock performs the
matrix multiplication of a block.

However, even if the translation from C to HDL is done
automatically with Vivado and OmpSs is used to schedule the
mxmBlock tasks to the best available computing unit, the
problem of how to partition the work remains. How many
instances of the mxmBlock should be implemented in the
available hardware? How big should be any of the instances? Is
it worth to implement two instances of a different size? Indeed,
in the presence of several possible kernels to be mapped to the
FPGA when all of them will not fit, which ones have to be
mapped to maximize the application performance? The expert
programmer may have an idea of which is the best combination
and reduce the number of possible implementations to few
of them (tens). However, those few implementations may
mean hundreds of hours if each of them implies one or more
bitstream generations.

In order to answer those questions a coarse-grain perfor-
mance estimator toolchain has been developed. This perfor-
mance estimator toolchain combines instrumentation based on
source to source compilation, high level synthesis from C code
and a heterogeneous task-based dataflow parallel simulator
developed to estimate the heterogeneous parallel performance
of OmpSs code with heterogeneous tasks. This simulator has
Extrae [3] instrumentation support that allows it to generate
Paraver [4] traces, allowing the programmers to have an
approximate visualization of what one would expect in a
real task execution on an heterogeneous system. Extrae is a
instrumentation library that generates time events, thread states
and communications in a raw trace that can be translated to
a Paraver trace format. In this work we have integrated the
simulation with a modified version of the Extrae so that Extrae
can take the timing of the simulation. Paraver is a tool that
allows performance analysis of parallel execution traces at
different levels of granularity: thread, task, MPI process, etc.

Figure 2 shows the overall steps of the developed

Fig. 2. Coarse-Grain Performance Estimator Toolchain

toolchain. The parallel programmer has to provide the OmpSs
code with the annotation of the tasks and the granularity he/she
wants to evaluate. As we mentioned above, the parallel pro-
grammer should have an idea of which are the most potential
combinations of tasks, reducing the amount of possible task
mappings and granularities. The automatic generation of the
different granularities is beyond of the scope of this paper
contribution. However, a starting programmer may need to
analyze a large number of granularities and mappings, and in
this case, a sytem to automatize the design space exploration
would be helpful [11].

The first step of the toolchain is to (1) transform the
OmpSs code to a sequential instrumented code, and (2) extract
the kernel code of each task annotated by the programmer.
Both these steps are automatically performed by a source
to source compiler from the original OmpSs code. Once the
instrumented sequential code has been obtained it is executed
in order to obtain a trace of tasks that will be used for
the performance estimation. The information contained in
the trace will be joined with hardware timing information
(estimated cycles and clock frequency) obtained from passing
the extracted kernel codes through Vivado HLS and fed to
our heterogeneous performance estimator that simulates the
dynamic behavior of a preconfigured system (a particular
implementation of the application in the Zynq board in our
case) and returns not only the estimated time used by the
given application in the selected hardware configuration but
also a Paraver trace that can be visualized in order to further
analyze the possible bottlenecks of the design. The whole cycle
only takes few minutes and can be repeated as many times as
necessary until all the possibilities have been explored. Finally,
the best implementation can be chosen and the time consuming
process of the hardware bitstream generation is done only
once. The next section further explains how the performance
estimation is done accurately enough to obtain useful results
for the programmer’s hardware/software co-design decision.

IV. IMPLEMENTATION

In order to obtain enough information from the OmpSs
code, this is first transformed into an instrumented sequential
code by source to source compilation. During this transforma-
tion, the directives of OmpSs are replaced with instrumentation
of the tasks to be able to generate a task execution trace
that will contain the following basic information: task number,
creation time and elapsed execution time in cycles in the CPU
based machine, number of dependences of the task, and for
each dependence: the data dependence memory address and
a label indicating the direction (input, output or inout) of the
dependence, and finally, task name for later identification in
the performance estimator toolchain.

37

The basic trace, generated by the execution of the in-
strumented sequential code, should be completed with further
information. First of all, the cost of creation of a task has
to be added. Each OmpSs task has a creation cost that is not
generated by the instrumented sequential code. Therefore, each
task instance of the task execution trace needs to be preceded
by its creation cost (creation cost task), that will be run (in
the simulation) only in the SMP device (independently if the
task is executed in the FPGA or in the SMP). The original task
instance in the trace will depend on the new creation cost task.
Next, the information of the devices where each task can be
executed and the latency of those should be also added. With
this objective, the extracted kernels are used in order to obtain
the latency of the hardware accelerators of those tasks that
can be run, based on programmer annotation, in the FPGA.
The latencies estimated for the computation and the input and
output transfers are obtained by passing the extracted task code
through the Vivado HLS, which, in few seconds, can generate
the HDL code and a report with all the information required
for this task code:

• Estimated number of cycles of the computation of the
task in the FPGA

• Estimated number of cycles spent transferring the
input/output parameters of the task to the FPGA

Using that information, each of the task instances that appears
in the basic trace is completed with more information that
states that the task can be also run in a hardware accelerator,
and with the latency of the associated hardware accelerator.

Further specific information, related to the system where
the programmer wants to execute the OmpSs code, should
be taken into account to complete the trace. For instance, it
should be evaluated if the system can overlap input and/or
output DMA memory transfers (between the shared memory
and the local memory in the accelerators) among different
hardware accelerators. However, this analysis only needs to
be done once. If the transfers can be done in parallel the
input and output data transfer latencies can be added to the
computational latency of the hardware accelerator associated
to this task. Otherwise, DMA memory transfer tasks will be
created and run in a shared hardware resource device to avoid
possible overlapping of input/output transfers. Those extra
tasks will have dependences with the corresponding tasks run
in the device. In the case of our target architecture, the Zynq
706 board, and the current environment analyzed, the input
parameters seem to scale with the number of accelerators, but
not the output parameters. Figure 3 shows the speedup obtained
when using 2 accelerators compared to 1 accelerator to transfer
the same amount of input and output memory data: 512Kbytes
and 1024Kbytes. Therefore, the time associated with a task
running in a hardware accelerator device can be seen as the
time of the input data DMA transfer plus the computation
time. This information, together with the time this task lasts
in a SMP core, will be part of the information of this task in
the trace. However, the output DMA memory transfer cost will
be represented by an new transfer task that will be run in a
shared hardware resource device to avoid possible overlapping
of output transfers, since no overlapping seems to be allowed.
This output transfer will have an dependence with the original
tasks run in the device.

Fig. 3. Speedup of using 2 accelerators vs 1 accelerator for the input/output
data transfers on the Zynq 706 Board for two different amounts of data.

On the other hand, each of those DMA transfers has to be
programmed in software from the SMP device. This software
cost may not be able to be done in parallel since they have to
use shared resources. Then, DMA programming tasks (submit
tasks) that will be run in a special device, shared among all
the hardware accelerators, are created for each input/output
transfer. The original task will depend on the input submit
tasks and the output submit tasks will depend on the original
task.

Once the trace has been completed with all the above in-
formation, the heterogeneous parallel architecture performance
estimator can simulate the execution of all the tasks (original,
creation cost, and DMA related tasks) in a dataflow manner
for a given configuration of the hardware. That is, it will take
care about the task input, output, and inout dependences and
will run them as soon as their dependences are ready and a
device that can execute them is available. The task dependency
management is done the same way that the OmpSs runtime
software system does. The performance estimator toolchain
can be run, for an specific transformed trace, under different
hardware configurations based on the programmer annotations.
As a result, the Paraver traces generated by the estimator will
allow the programmer to choose the best estimated combina-
tions of software and hardware accelerators.

V. EXPERIMENTAL SETUP

Results in Section VI have been obtained on a Zynq All-
Programmable SoC 706 board. Timing of the applications has
been obtained by instrumenting with gettimeofday the part
of the code that calls several times the kernel code. Results
show the average elapsed execution time of 10 application
executions on the Zynq 706 board under linux.

The OmpSs implementation is based on Mercurium
1.99.4 and Nanos++ 0.8. For the hardware compilation
branch we have used the Xilinx ISE Design 14.7 and
the Vivado HLS 2013.2 tools. The estimator has been
developed with support for Extrae Library 2.5.1 and
Paraver 4.3.5. The Paraver was used to analyze the
estimated execution traces. All OmpSs codes have been
compiled with the arm-xilinx-linux-gnueabi-g++
(Sourcery CodeBench Lite 2011.09-50) 4.6.1
and arm-xilinx-linux-gnueabi-gcc (Sourcery
CodeBench Lite 2011.09-50) 4.6.1 compilers,
with "-O3" optimization flag.

We show real execution and estimator results for 2 tiled
applications: matrix multiply (Figure 1) and cholesky (Fig-
ure 4), using different fpga task granularities for the tiles

38

(blocks): 64 × 64-block single-precision floating point matrix
multiply (fine-grained tasks), 128×128-block single-precision
floating point matrix multiply and 64 × 64-block double-
precision floating point cholesky decomposition. In the case
of the cholesky decomposition three out of four of the kernels
are annotated to be able to be run in the SMP and also the
FPGA. The fourth one has not been considered to be mapped
to the FPGA by the programmer. All real data generated by
the Vivado HLS has been synthesized with IEEE-754 standard
compliance.

pragma omp t a r g e t d e v i c e (fpga , smp)
pragma omp t a s k i n ([BS∗BS]A) i n o u t ([BS∗BS]C)
vo id d s y r k (d oub l e ∗A, d oub l e ∗C , i n t BS) ;

pragma omp t a s k i n o u t ([BS∗BS]A)
vo id d p o t r f (d oub l e ∗A, i n t t , i n t BS) ;

pragma omp t a r g e t d e v i c e (fpga , smp)
pragma omp t a s k i n ([BS∗BS]A) i n o u t ([BS∗BS]B)
vo id d t r sm (d oub l e ∗A, d oub l e ∗B , i n t t , i n t BS) ;

pragma omp t a r g e t d e v i c e (fpga , smp)
pragma omp t a s k i n ([BS∗BS]A, [BS∗BS]B)\

i n o u t ([BS∗BS]C)
vo id d t r sm (d oub l e ∗A, do ub l e ∗B , do ub l e ∗C,\

i n t t , i n t BS) ;

vo id c h o l l l (do ub l e ∗∗AA, i n t t , i n t NB, i n t BS)
{

f o r (i n t k = 0 ; k < NB; k++) {
f o r (i n t j =0 ; j<k ; j ++)

d s y r k (AA[j ∗NB+k] , AA[k∗NB+k] , BS) ;

d p o t r f (AA[k∗NB+k] , t , BS) ;

f o r (i n t i = k +1; i < NB; i ++)
f o r (i n t j =0 ; j<k ; j ++)

dgemm (AA[j ∗NB+ i] ,AA[j ∗NB+k] ,\
AA[k∗NB+ i] , t , BS) ;

f o r (i n t i = k +1; i < NB; i ++)
d t r sm (AA[k∗NB+k] , AA[k∗NB+ i] , t , BS) ;

}
}

Fig. 4. Cholesky application annotated with OmpSs directives. Each of the
function calls will be a task instance (dsyrk, dtrsm, dtrsm: SMP and
FPGA, dpotrf: SMP only).

VI. RESULTS

In this section, a coarse-grain comparison of the estimator
and real execution results is shown. The comparison is done
varying relevant aspects in the design of heterogeneous parallel
applications for FPGA based architectures, highlighting the
analysis time required in our proposed methodology.

In the case of the tiled matrix multiplication we show a
performance estimation that evaluates three different possible
design decisions. The first one is to select between two
different task granularities (64x64 blocks and 128x128 blocks)
for the task kernel mxmBlock in Figure 1. Second, it is
evaluated the difference between using one or two accelerators
for running 64x64 mxmBlock tasks. Having two accelerators

for the 128x128-block case has not been considered in the
evaluation because the hardware resource estimation for two
128x128-block mxmBlock accelerators indicates that it is not
feasible to map them into the programmable logic. Finally, we
have considered the performance impact of allowing heteroge-
neous execution (mxmBlock task is specified with SMP and
FPGA) or not.

Figure 5 shows the performance results of the commented
cases for both the estimator and the real execution. Results are
normalized with respect to the slowest case (one accelerator
of 128x128 blocks and with heterogeneous execution - label
1acc 128 + smp in the figure). Although estimator and
real execution have different absolute speedups (our estima-
tor does not consider memory hierarchy aspects like cache
coherence and pinning of memory pages, neither memory
contention, etc.), results show the same speedup trends. That
allows the programmer to adapt her/his OmpSs program to
have 128x128 mxmBlock tasks with the FPGA as the only tar-
get device. This decision can be taken after less than 5 minutes
of work (coffee break), that is what the analysis requires under
the proposed methodology. Figure 6 shows the time (seconds)

Fig. 5. Estimation and real matrix multiply performance comparison for
different hardware configurations of the system and task configurations.

in logarithmic scale for the analysis of the configurations
under our proposed methodology (left) and the traditional
hardware-software design cycle (right). In particular, for the
traditional design cycle, we only count the hardware generation
of the different accelerators and combinations. The hardware
generation time required for the full-analysis is more than 10
hours. On the other hand, the performance estimator toolchain
lasts for less than 5 minutes and automatically provides the
best choice among the considered configurations.

In addition to this decision, the programmer may want to
do a depth analysis of the performance estimation using the
Paraver traces generated in the estimation process. Paraver
traces can be visualized and compared to detect potential
bottlenecks in the parallel and heterogeneous execution of the
tasks. Figure 7 shows the Paraver view of four estimated
task execution traces for four different configurations shown
in Figure 5 with the same time scale; from top to bottom:
1 acc 128x128, 2 acc 64x64, 2 acc 64x64 + SMP and 1 acc
128x128 + SMP. Paraver traces show the execution of the tasks
(original and additional ones) in the devices, along the time
(x-axis). Each Paraver trace shows an horizontal bar for each
of the devices. First horizontal bar shows SMP task executions

39

Fig. 6. Matrix Multiplication analysis time compared to hardware generation
time of the hardware accelerators.

Fig. 8. Cholesky task dependecy graph for number of blocks equal to 4.

(original and creation tasks), last two bars show tasks running
on shared locked resources (output DMA memory transfer
from the FPGA, and DMA programming - submit) and the rest
of the bars show mxmBlock tasks executed in the accelerators.
The analysis shows that the current scheduling policy does not
help to improve the performance when running mxmBlock in
both SMP and FPGA. The high cost of executing the SMP
version of the task compared to the FPGA version may be
translated into a huge load imbalance problem if a wrong
scheduler decision is taken. This has a significant impact in
the case of 1 acc 128x128 running in both SMP and FPGA.

In the case of the tiled cholesky we have evaluated
different resources distribution approaches between kernels
that execute interleaved due to the complex nature of the
cholesky dynamic graph (Figure 8). In order to simplify the
example, the task granularity is fixed (64x64 blocks) and we
have only evaluated which kernels should or should not be
accelerated in the FPGA (note that to further complicate the
scheduling, the application even has tasks - dpotrf task of
Figure 4 - that can only be run in the SMP). As it is shown
in Figure 9, the same speedup (normalized to the slowest
configuration) trends are obtained in both estimated and real
performance. The first three bars show the performance im-
pact of implementing accelerators that try to maximize the
usage of the hardware resources of the programmable logic
(FR-dgemm, FR-dsyrk, FR-dtrsm, where FR stands
for full resources), which limits the number of accelerators
that fit in the hardware to one and forces all the other kernels
to be executed in the SMP. The last set of three bars evaluate

the performance of all the possible combinations of two tasks
among three annotated with target FPGA (dgemm+dgemm,
dgemm+dsyrk, dgemm+dtrsm) as the configuration only
supports two accelerators.

Fig. 9. Estimation and real cholesky performance comparison for different
hardware configurations of the system and task configurations.

The programming productivity gain of the tiled cholesky is
much more significant. A full analysis of those combinations
requires one day and a half compared to less than 10 minutes
with our methodology. Indeed, this day and a half is just
for hardware generation time, no execution time is included
neither creating the hardware design and integrating it to the
rest of the application.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the current status of a
heterogeneous parallel performance estimator that can help
to potentially reduce the development effort in heterogeneous
parallel computing systems like the Zynq All-Programmable
SoC. The methodology is currently implemented for OmpSs
applications and Zynq SoC. OmpSs is a task-based dataflow
parallel programming model that helps to express heteroge-
neous task decompositions of an application. Thus, the pro-
grammer can annotate the application with OmpSs directives
to identify tasks and the target devices where those tasks
can be executed at run-time. Based on this information, our
methodology estimates which is the best hardware-software
partitioning of the annotated tasks on the Zynq Soc in few
minutes. Results show that the best configurations and OmpSs
annotations chosen by our estimation correspond with the real
ones for the evaluated applications and configurations. And
although the current performance estimator toolchain could
be extended to automatically take care of different numbers
of resources (e.g. the number of channels between the FPGA
and the memory, cache coherence impact, etc), and explore
different design space exploration strategies, the current im-
plementation already shows speedups of more than two orders
of magnitude (minutes vs days) on the process of achieving
high heterogeneous performance for complex applications like
cholesky.

Future work is to integrate power-efficiency and look-ahead
scheduling heuristics into the simulator as well as helping the
programmer with the hardware/software partitioning strategy
to improve performance and/or area for a broader set of
application domains.

40

Fig. 7. MxM performance estimator traces for heterogeneous task executions running on 1 or 2 accelerators and none/one SMP. Blocksizes: 64x64 and 128x128.

VIII. ACKNOWLEDGMENTS

We thank the anonymous referees for their valuable feed-
back. This work is supported by the AXIOM project, funded
by EU H2020 program (grant ICT-01-2014 GA 645496),
the Spanish Government, through the Severo Ochoa program
(grant SEV-2011-00067) the Spanish Ministry of Science
and Technology (TIN2012-34557) and the Generalitat de
Catalunya (MPEXPAR, 2014-SGR-1051). We thank the Xilinx
University Program for its hardware and software donations.

REFERENCES

[1] Altera, Corp. Nios II C2H Compiler User Guide, 2009.
[2] C. Alvarez, E. Ayguad, J. Bueno, A. Filgueras, D. Jimnez-Gonzlez,

X. Martorell, N. Navarro, D. Theodoropoulos, D. Pnevmatikatos N.,
D. Scordino, Catani, Claudio, P. Gai, C. Segura, C. Fernandez, D. Oro,
J. Rodriguez-Saeta, P. Passera, A. Pomella, A. Rizzo, and R. Giorgi. The
axiom software layers. In DSD ’15, Proceedings of the Euromicro Con-
ference on Digital System Design, co-located with the 41st Euromicro
Conference on Software Engineering and Advanced Applications (TO
APPEAR), June 2015.

[3] Barcelona Supercomputing Center. Extrae Instrumentation Library,
Sept. 2013. http://www.bsc.es/computer-sciences/extrae.

[4] Barcelona Supercomputing Center. Paraver Visualization Tool, Sept.
2013. http://www.bsc.es/computer-sciences/performance-tools/paraver.

[5] P. Burgio, C. Alvarez, E. Ayguad, A. Filgueras, D. Jimnez-Gonzlez,
X. Martorell, N. Navarro, and R. Giorgi. Simulating next-generation
cyber-physical computing platforms. In De-CPS ’15, Proceedings of
the snd Workshop Challenges and New Approaches for Dependable
and Cyber-Physical System Engineering (TO APPEAR), June 2015.

[6] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski. Legup: High-level synthesis
for fpga-based processor/accelerator systems. FPGA ’11, pages 33–36,
2011.

[7] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and
A. R. LeBlanc. Design of ion-implanted MOSFET’s with very small
physical dimensions. IEEE Journal of Solid-State Circuits, 9:256–268,
Oct. 1974.

[8] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A hybrid multi-core parallel
programming environment. In First Workshop on General Purpose
Processing on Graphics Processing Units, October 2007.

[9] A. Duran, J. M. Perez, E. Ayguadé, R. M. Badia, and J. Labarta.
Extending the openmp tasking model to allow dependent tasks. In
Proceedings of the 4th International Conference on OpenMP in a New
Era of Parallelism, IWOMP’08, pages 111–122, Berlin, Heidelberg,
2008. Springer-Verlag.

[10] A. Filgueras, E. Gil, D. Jimenez-Gonzalez, C. Alvarez, X. Martorell,
J. Langer, J. Noguera, and K. Vissers. Ompss@zynq all-programmable
soc ecosystem. FPGA ’14, pages 137–146. ACM, 2014.

[11] K. Grüttner, P. A. Hartmann, T. Fandrey, K. Hylla, D. Lorenz, S. Stat-
telmann, B. Sander, O. Bringmann, W. Nebel, and W. Rosenstiel.
An ESL timing & power estimation and simulation framework for
heterogeneous socs. In XIVth International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation, SAMOS
2014, Agios Konstantinos, Samos, Greece, July 14-17, 2014, pages 181–
190. IEEE, 2014.

[12] B. Holland, K. Nagarajan, C. Conger, A. Jacobs, and A. D. George.
Rat: A methodology for predicting performance in application design
migration to fpgas. In Held in Conjunction with SC07, HPRCTA ’07,
pages 1–10, 2007.

[13] T. Jeger, R. Enzler, D. Cottet, and G. Troster. The performance
prediction model - a methodology for estimating the performance of
an fpga implementation of an algorithm. In Technical report, 2000.

[14] D.-U. Lee, A. Gaffar, O. Mencer, and W. Luk. Optimizing hardware
function evaluation. Computers, IEEE Transactions on, 54(12):1520–
1531, Dec 2005.

[15] W. A. Najjar and J. R. Villarreal. Fpga code accelerators - the compiler
perspective. In DAC, page 141, 2013.

[16] The Portland Group. PGI Accelerator Programming Model for Fortran
& C.

[17] M. C. Smith and G. D. Peterson. Parallel application performance on
shared high performance reconfigurable computing resources. Perfor-
mance Evaluation, 60(1):107–125, 2005.

[18] C. Steffen. Parametrization of algorithms and fpga accelerators to
predict performance. Proc. Reconfigurable System Summer Institute
(RSSI), pages 17–20, 2007.

[19] M. Streubhr, R. Rosales, R. Hasholzner, C. Haubelt, and J. Teich. Esl
power and performance estimation for heterogeneous mpsocs using
systemc. In FDL, pages 1–8. IEEE, 2011.

[20] Xilinx. Zynq UltraScale+ MPSoC, Aug. 2015.
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-
mpsoc.html.

41

