
A matrix multiplier case study for an evaluation of a
configurable Dataflow-Machine

Lorenzo Verdoscia and Roberto Vaccaro
Institute for High Performance Computing and

Networking - CNR
Via Castellino, 111 - 80131 Napoli, Italy
lorenzo.verdoscia@na.icar.cnr.it

Roberto Giorgi
Dept. Ingegneria dell’Informazione

Università di Siena, Italy
giorgi@dii.unisi.it

ABSTRACT
Configurable computing has become a subject of a great
deal of research given its potential to greatly accelerate a
wide variety of applications that require high throughput.
In this context, the dataflow approach is still promising to
accelerate the kernel of applications in the field of HPC.
That tanks to a computational dataflow engine able to exe-
cute dataflow program graphs directly in a custom hardware.
On the other hand, evaluating radically different models of
computation remains yet an open issue. In this paper we
present as case study the matrix multiplication that con-
stitutes the fundamental kernel of the linear algebra. The
evaluation takes into account the execution of the matrix
product both in non-pipelined and pipelined modes. Re-
sults obtained running the execution of the two modes on an
FPGA-based demonstrator show the validity of the config-
urable Dataflow-Machine. Moreover, at the same through-
put, the power consumption is expected to be lower than in
clock-based systems.

Categories and Subject Descriptors
C.0 [System Specification Methodology]: Other Archi-
tecture Styles—Data-flow architectures; D.1 [Programming
Techniques]: Functional Programming

General Terms
Design, Languages, Algorithms

Keywords
Functional languages, data-flow program graphs, many-cores,
matrix multiplication

1. INTRODUCTION
Terms like configurable or reconfigurable computing are

not new, and in the past they had a more general meaning
than now [5]. In contrast, nowadays, FPGA-based config-
urable computing has become a subject of a great deal of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’15 May 18-21, 2015, Ischia, Italy
Copyright 2015 ACM 978-1-4503-3358-0/15/05 ...$15.00.
http://dx.doi.org/10.1145/2742854.2747287

research given its potential to greatly accelerate a wide va-
riety of applications that require high throughput. Its key
feature is the ability to perform computations in hardware to
increase performance, while retaining much of the flexibility
of a software solution. However, at the best of our knowl-
edge, this flexibility still presents a high context switch time
[12] when two different task processes (threads) cannot si-
multaneously coexist on the same FPGA. To overcome this
drawback, some Authors [21] have recently proposed a more
general configurable solution that presents the same flexi-
bility of FPGAs but with a context switch time comparable
with that CPUs.

After all, in the domain of supercomputing, the current
era is referred to as the petascale era, while the next big
HPC challenge is to break the exascale barrier. But, due
to technological limitations [18] there is growing agreement
that reaching this goal will require a substantial shift toward
hardware/software codesign [4][15].

In order to achieve maximum performance, the driving
idea is to accelerate the kernel of the application into a com-
putational dataflow engine able to execute its dataflow pro-
gram graph (DPG) directly in a custom hardware. In this
way, the resulting graph execution can not only take advan-
tage from the explosion of the fine-grain spatial parallelism
that dataflow presents but can also exploit the temporal
parallelism (pipeline) offered by the sequence of actors con-
stituting the graph. Ideally, in the static dataflow form, data
can enter and exit each stage of the pipeline at every cycle.

Someone can argue that being a dataflow execution com-
pletely asynchronous, this could slow down the run of a
pipelined DPG. However this is not a problem for big data
computations, since the speed of computation depends on
pin throughput and local memory size/bandwidth inside the
computational chip [21]. More, it should be considered that,
in the many-core scenario, till now none employs single cores
as chain of a pipelined computation.

Therefore, these system may seem to perform poorly when
compared to systems with a high clock frequeny. However, if
the comparison is based on data throughput, these systems
perform richly [13] and consume less power, given their abil-
ity to perform asynchronous computations and use less space
compared to systems driven by a fast clock. Of course, ma-
chines based on the dataflow approach perform poorly on
relatively simple benchmarks, which are typically not rich
in the amount and variety of data structures, but they per-
form fairly well on relatively sophisticated benchmarks, rich
in the amount and variety of data structures.

But, evaluating radically different models of computation

- Compiler
- Partitioner
- Mapper
- Scheduler

HOST

- I/O

- MASS
STORAGE

...

INTERNODE INTERCONNECT

Manycore
Dataflow
Execution

engine

Kernel
Processor

PROCESSING

NODE # 1

Manycore
Dataflow
Execution

engine

Kernel
Processor

PROCESSING

NODE # 2

Manycore
Dataflow
Execution

engine

Kernel
Processor

PROCESSING

NODE # k

(1) general architecture (2) Kernel Processor

Graph Configuration
Manager (GCM)

Parallel Memory
Processor (PMP)

HOST

SID

SNC

Graph Configuration
Table (GCT)

Memory

Result DataValue
(RDV) Memory

Initial DataValue
(IDV) Memory

Graph SCheduler
(GSC)

To GC

from T_O

to T_I

configurable Dataflow-Machine

Figure 1: D3AS system: (1) the computing
Dataflow-Machine and (2) the kernel processor

such as dataflow remains yet to be addressed, especially in
the context of total cost of ownership [6]. To contribute in
this evaluation effort, we show in this work how a computing
Dataflow-Machine behaves when it executes the kernel of an
application like matrix multiplication and when its execution
requires a further acceleration due to the huge amount of
input data.
The remainder of the paper is organized as follows. Sec-

tion 2 summarizes the main characteristics of a Configurable
Dataflow-Machine to facilitate the paper reading; Section 3
defines the evaluation model for the case study and shows
the resulting performance over the configurable Dataflow-
Machine; Section 4 discusses related work in the area of the
dataflow architectures; Section 5 for our conclusions.

2. THE CONFIGURABLE DATAFLOW MA-
CHINE AND ITS PROGRAMMING LAN-
GUAGE

2.1 The configurable dataflow machine
A configurable Dataflow-Machine [21], whose general ar-

chitecture is shown in Fig. 1.1, has been developed within an
integrated software-hardware project named Demand Data
Driven Architecture System (D3AS) [23]. While D3AS sup-
plies all software activities to compile, partition, map, and
create the ordered list of DPGs to assign to each process-
ing, and etc. by means of a host, the configurable Dataflow-
Machine (CDM) is constituted by k processing nodes and an
internode interconnection for the communication of DPGs
allocated over more nodes .

The processing node. It is constituted by a Kernel Pro-
cessor (Fig. 1.2) that supports the macro-functions to load
a DPG onto the associate Many-DAC Dataflow Execution-
engine (MDE) (Fig. 2.1). Differently from a von Neumann-
based many-core chip, the MDE is a many-core chip where
the n DACs (Dataflow Actor Cores) are a set of completely
decentralized and self-scheduling execution units connected
through a crossbar switch network that implements arcs and
links. The graph configurator register holds the DAC func-
tion codes and the crossbar-switch code that constitute the
DPG configuration loaded onto the MDE. Three I/O reg-

· · ·

G
ra

p
h

C
o

n
fi

g
u

ra
to

r
(G

C
)

Inteconnect

GCT Token_In (T_I)

A B

Token_Out (T_O)

…………

Token_In A
buffer

registers

Token_In B
buffer

registers

Token_Out
buffer

registers

DAC
1

DAC
2

DAC
n

{

(1) Manycore Dataflow Execution Engine

(2) Dataflow Actor Core
exo-architecture

<Data value, validity>

Firing
Rule
Unit

(FRU)

augmented

a

Arithmetic
Logic Unit

(ALU)

function
code

8

33

<data value,
validity>

33

<data value,
validity>

33

Figure 2: D3AS computing system: the execution
engine

ister banks are needed to receive/send data tokens from/to
the Kernel Processor. So, once configured, DACs can fire as
soon as valid data tokens start entering the MDE thanks to
their asynchronous behavior. Tokens validity determines if a
data value is valid or not valid to fire a D# operator instead
of using the token presence to perform its functions as it
happens in dataflow schemas [3]. A DAC (Fig. 2.2) consists
of a firing rule unit that implements the hHLDS firing rules
(see Sect. 2.2.1) by means of a simple hardware circuitry,
and an augmented ALU that implements the D# operator
set(see Sect. 2.2.1). In this way, dataflow actor operations
are sequenced by the data validity firing rule.
In cooperation with the MDE, the Kernel Processor includes
three fundamental blocks whose functionalities are:

- Graph Configuration Manager (GCM): (i) all the sub-
DPG configuration tables, coming from the compiling
phase (on the host), are stored in the Graph Configura-
tion Table memory; (ii) when an enabling Send-Next-
Configuration (SNC) signal from the Graph Scheduler
(GSC) reaches the graph manager, the graph manager
transfers the scheduled graph configuration from its
memory to the MDE.

Parallel Memory Processor (PMP): at the same time,
the scheduler sends the enabling Send-Initial-Data (SID)
signal to this memory processor that (i) prepares the
initial data tokens for their transfer to the dataflow
execution engine; after having organized the previous
transfer, (ii) prepares the result data tokens for to-
kens transfer from the dataflow execution engine to
the output buffer, as soon as they are ready in the
output buffer registers; when the computation ends, it
(iii) sends a termination signal to the scheduler.

-- Graph SCheduler (GSC): (i) it implements the schedul-
ing policy (defined after the partitioning and mapping
activities) for the sub-DPGs allocated on the process-
ing node; (ii) it sends enabling signals to the graph
configuration manager and to the parallel memory pro-
cessor; it (iii) manages the interaction with the host.

The Internode Interconnect. At the moment, we are
evaluating three possible solutions – a crossbar switch, a di-
rect network topology, and a trade-off solution between the
first two. The reason is that each of them conditions several
parameters like scheduling policy, scalability, cost, perfor-
mance, and so on [21], when the DPG dimension requires to
be sub-DPGs over several processing nodes.

2.2 hHLDS and the programming language

2.2.1 The hHLDS model
High-Level Dataflow System (HLDS) [22] is a formal model

to describe the behavior of a directed dataflow graph where
nodes are operators (actors) or links (places to hold tokens)
that can have heterogeneous I/O conditions. Nodes are con-
nected by arcs along which tokens (data and control) may
travel. In this paper, also the homogeneous HLDS (hHLDS)
model was presented. hHLDS describes the behavior of a
static dataflow graph imposing homogeneous I/O conditions
on actors but not on links. Actors can only have exactly one
output and two input arcs and consume and produce only
data tokens; links represent only connections between arcs.
Since hHLDS’ actors cannot produce control tokens, merge,
switch, and logic-gate actors [3] are not present. In this
model, while actors are determinate, links may be not de-
terminate. In the hHLDS model there exist two types of
links: i) Joint links, which represent a place where two or
more output arcs can coexist and ii) Replica links, which
are similar to joint links but have only one output arcs. In
the case of Joint links the output arc (among the several
available) – where the token will travel – is unpredictable.
In contrast, these features simplify the design of a dataflow
execution engine chip using only identical DACs and one
type of connection among them. In addition, despite the
model simplicity, in hHLDS it has been proved that it is
always possible to obtain DPGs which are determinate and
well-behaved, and where:

• actors fire when their two input tokens are valid, i.e.
able to fire an actor, no matter if their previous output
token has not been consumed. In this case, the new
token shall replace the previous one. In a system that
only allows the flow of data tokens, this property is
essential to construct determinate cycles (loops);

• to execute a program correctly, only one way token
flow is present as no feedback interpretation is needed;

• no synchronization mechanism needs to control the to-
ken flow, thus the model is completely asynchronous.

In hHLDS actors and links are connected to form a more
complex DFG. However, the resulting DFG may be non-
determinate if cycles occur because no closure property can
be guaranteed [14]. This happens for sure when the graph in-
cludes joint links, which are not-determinate. In the case the
DPG is determinate and well-behaved, it is named macro-
Actor (mA), and it is characterized by having I(mA)> 2
and O(mA)≥ 1 where I(mA) is the number of input arcs
(in-set) of the mA and O(mA) is the number of its output
arcs (out-set).

2.2.2 The D# machine language
At the present, the machine offers programming in both

Chiara functional language [20] and the machine language
called D#. D# is both the machine language and the graph-
ical representation language that describes the dataflow graph
of a program. In the D# language a program is a collection
of standard expressions that form a DPG where each ex-
pression refers an actor and specifies its functionality. A
D# particularity is that its operators form the functionally
complete set of the elemental operators for Chiara, allowing
thus a DPG be also represented graphically. It has been

mA1

LST

TESTTEST

a

c

b

IT_R

a b

de f

+

a b c

R

TEST

c

c
p

d

d

COND

a b

TEST

(a) (c)(b)

Figure 3: The basic macro-Actors (mAs) in D#: (a)
TEST, (b) COND, (c) IT R

defined applying the demand-data-driven approach to co-
design methodology [24] between the functional paradigm
and the hHLDS paradigm.
When a DPG, i.e. the abstract entity in hHLDS, is em-
bodied in the machine hardware, it happens that: (1) each
DPG actor (abstract entity) is turned into one DAC, i.e. the
physical entity, whilst the actor firing rules become the DAC
activation rules; (2) each arc/link (abstract entities) that
connects two/more-than-two DPG actors is turned into a
wire/wire-junction inside the interconnection network (phys-
ical entity) that connects two/more-than-two DACs; (3) each
token and its validity (abstract entity) are turned into a data
value and its validity1 signal (physical entity) so that the
self-scheduling of a DACs can happen.

As macro-Actors (mAs) structures in D# are formed like
in hHLDS, here we shortly report the fundamental charac-
teristics of those that allow the creation of more complex
structures (i.e. TEST, COND, and IT R mAs).

The macro-Actor TEST. It is the simplest relational
structure of data-dependent DPG. TEST is a mA with in-
set = 3 and out-set =1 and is formed connecting the re-
lational actor R to the actor that performs the arithmetic
operator + as shown in Fig 3(a). If a and b satisfy the
relation R, the token generated is a valid token with data-
value 0 (zero), and the token c is produced. If its relation
is not satisfied, the token generated is not valid with data-
value ”don’t-care”. When coupled to its complement TEST,
it forms a fundamental building-block to create conditional
and iterative mAs.

The macro-Actor COND. It is the simplest conditional
structure. COND is is a mA with in-set = 4 and out-set
=1 and is formed connecting the two mAs TEST and TEST
with a Joint link as shown in Fig. 3(b). If the relation of
TEST is satisfied, it produces the token c, otherwise it pro-
duces the token d. It forms the building-block to create more
complex conditional structures as an example the construct
case.

The macro-Actor IT R. It is the iterative data-depend
structure. IT R is a mA with in-set = 2 and out-set =1
and is formed connecting the two mAs TEST and TEST,
an arithmetic actor or a macro-Actor mA1, and the actor

1Validity is the intrinsic characterization of a token, and
operations start or o not on this information. In contrast to
Dennis’ token presence [3], where operations are triggered by
the presence of tokens, with the validity information we not
only remove the check of token absence on any output arc
to fire an actor but remove also the Instruction Scheduler.

X X
1 2

+ +

+

+

+

X X
M-1 M

K

1

1

1

l
+

M/2

RI1 RIM-1

LI1

O1

O1 lO

Oi

OUT

O1

LIM-1

OM-1

RI2 RIM

LI2

O2

LIM

OM

OM/2

p

L+1L= lg Mé ù2

si

sL

s1

i+1

1

2

Kernel Processor

Manycore Dataflow Execution
engine

Initial Data Value
Memory

RI

Result
Data Value
Memory

Parallel Memory Processor

p

si

sL

s1

DP(M)

OUT

LI RI

LI

1 M M

a b

Figure 4: Matrix product: (a) the generalized
dataflow program graph and (b) the corresponding
resources required to a processing node

LST as shown in Fig. 3(c). The LST semantics is: it selects
the right token the first time it is fired, the left token other-
wise. It constitutes the building- block to create more com-
plex data-dependent iterative structures. As an example, if
mA1 (at the center of Fig. 3(c)) is itself an IT R macro-
Actor, the figure represents a determinate and well-behaved
nested-data-dependent iterative structure.

3. CASE STUDY: THE MATRIX MULTIPLI-
CATION

To test some computational capabilities of the configurable
Dataflow-Machine we have used the product of two matri-
ces C(N,P) = A(N,M) × B(M,P) where ai,j with i =
1, 2, . . . , N and j = 1, 2, . . . ,M is an element of A, and bj,k
with j = 1, 2, . . . ,M and k = 1, 2, . . . , P is an element of B.
The evaluation model. Fig. 4.a shows the generalized
DPG for the matrix product expressed in terms of dot prod-
uct (ai·bi) of the N row vectors of matrix A

ai = {ai1, ai2, . . . , aiM} i = 1, 2, . . . , N

and P column vector of matrix B

bi = {b1i, b2i, . . . , bMi} i = 1, 2, . . . , P

As we can observe, it constitutes a reverse tree organized
in Ls = ⌈log2M⌉ + 1 sequential levels. It consists of 2M −
1M actors with M of them implementing the multiplication
function and M−1 of them implementing the addition func-
tion. LI, RI, and O represent the left input token set, the
right input token set, and the output token set respectively,
as they are defined in the language D#.
Fig. 4.b shows how a generalized processing node2 is or-
ganized in terms of the MDE engine and kernel proces-
sor. Inside the MDE engine, all these DACs are allocated
on a number of levels like in the DPG and execute the
dot product computation in a number of sequential stages
Ln = L+ 1 = ⌈log2M⌉+ 1.
At each stage, the maximum spatial parallelism is exploited,

2In this context, without losing of generality, we use the
term node processing instead of generalized processing node
to indicate the set of processing nodes necessary to represent
the whole DPG.

Table 1: DPE engine characteristic table
Level DAC Operation Parallelism

number type time degree (spatial)
1 M mpy τm M
2 M/2 add τa M/2
...
Ln 1 add τa 1

Total computing time Tc = τm + ⌈log2M⌉ ∗ τa

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450 500

Tc

[ns]

Vector size M

ta = 5 ns

ta = 2 ns

ta = 1 ns

Figure 5: Tc versus vector size M for different values
of τa

and the total computational time is Tc = τm + ⌈log2M⌉ ∗ τa
where τm is the multiplication delay and τa is the addition
delay. As these delays depend on the utilized technology, we
assume that τm = 2τa and that 1ns ≤ τa ≤ 5ns, including
the token transfer from the kernel processor.
Its characteristics are synthetically shown in Table 1. Fig-
ure 5 shows the total computation time Tc of the DPE versus
vector dimension values up to 500 for three different values
of τa.
It is important to outline that, with reference to the DPG,
it is possible to consider this operation decomposed into a
linearly organized set of tasks or phases. Besides, in a MDE,
the pipelining technique may be used to overlap the com-
putation of independent sets of operands because it con-
sists of a number of stages equal to the number of levels
of the calculation tree Ln = L + 1. A first stage π exe-
cutes the parallel multiplication of the components of the
two M-dimensioned vectors; L stages execute the parallel
additions σi with i = 1, 2, . . . , L to compute the sum of
the M products. The interstage latches needed for the cor-
rect operations of pipeline are inside the Initial Data Value
memory of kernel processor. This is a purely asynchronous
pipelined system,where the times at which significant events
take place, including the flow of tokens between stages, are
not under the control of a central clock but are regulated in
a completely decentralized manner by the DACs belonging
to the different stages.
For each stage i, we define a ”stage delay” τi as the time re-
quired to perform it. The ”pipeline period” τp, the minimum
time interval between two successive stages of the pipeline, is
determined as τp = Max(τi) for 1 ≤ i ≤ Ln. The ”pipeline
frequency” ϕ = 1/τp, the inverse of the pipeline period, is
the frequency at which the pipeline operates. The charac-
teristics of pipelined MDE are summarized in Table 2.

Table 2: Pipelined MDE engine characteristics.
Number of stages Ln : ⌈log2M⌉+ 1
Interstage latches : inside the DAC

Stage delay τi : time required for the ith stage
to carry out its task

Pipelining period τp : the minimum time interval
between two successive
stages of the pipeline
τp = Max(τi)1 ≤ i ≤ n

Pipelining frequency ϕ: 1/τp
Type of parallelism : spatial and temporal
Parallelism degree : 2M − 1

To evaluate the performance enhancement due to the pipelin-
ing, a number of performance characteristics should be con-
sidered as the throughput, the speedup, the throughput rate,
and latency and efficiency. Among these the throughput TP
and the speedup S are the most important and meaningful
for our purpose. For the MDE operating in non-pipelined
mode, the number of stages completely processed by the
system per unit time is

TP =
1

τm + ⌈log2 M⌉ ∗ τa

In the pipelined mode (Table 2) the MDE operates as an
Ln-stage pipeline system where the tasks are delivered to
the pipeline at the same time interval τp. The system will
require a time Ln × τp to fill the pipeline and process the
first task; thereafter, it will process one task after every time
interval τp. Therefore, the pipeline system processes K tasks
(stages) in a time

Tcp(K,Ln) = (⌈log2M⌉+K) ∗ τp

Hence the throughput TPp of the system in pipeline mode
is

TPp =
K

(⌈log2M⌉+K) ∗ τp
The speedup S of the pipelined Ln-stage computing K tasks
respect to the non-pipelined computation is

S =
K ∗ (τm + ⌈log2M⌉) ∗ τp

(⌈log2M⌉+K) ∗ τp

Performance evaluation. To evaluate the behavior of
the configurable Dataflow-Machine, we have used CODACS
demonstrator [19], an FPGA-based prototype based on 5 Al-
tera APEX20K15-3C components. The main performance
characteristics of the MDE for the pipelined and non-pipelined
mode operating modalities are reported in Table 3. Fig-
ure 6 shows Performance, in Gigaflops, of the MDE versus
vector size M for τa = 1 ns.
At this point, parameterized to the problem size M, the
MDE has been completely characterized and defined from
both an architectural and performance point of view. This
is very important because it constitutes the hard part of the
dataflow process for the dot products of two vectors of size
M. In this case all the K entries of the product matrix C
are the dot product of row and column vectors of the two
matrices A and B, so the dot products to execute are of this
type.

Table 3: Characteristics of a pipelined vs non-
pipelined MDE.

Operating Modalities
Non Pipelined Pipelined

Throughput
1

τm + ⌈log2 M⌉ ∗ τa
K

(⌈log2 M⌉+K) ∗ τp

Speedup ——
K ∗ (τm + ⌈log2 M⌉τa)
(⌈log2 M⌉+K) ∗ τp

Performance
2M − 1

τm + ⌈log2 M⌉τa
2M − 1

τp

0,1

1

10

100

1000

1 50 100 150 200 250 300 350 400 450 500

Vector size M

P

Pp

P
e
rf

o
rm

a
n

c
e

G
fl

o
p

s

Figure 6: MDE performance in pipelined (Pp) and
non pipelined (P) modes versus vector size M (τa = 1
ns)

4. RELATED WORK
A recent project that investigated how to exploit dataflow

concepts in many-cores was TERAFLUX [8], that intro-
duced dynamic dataflow based threads called DF-threads
[9]. Its challenging goal was to develop a dataflow based ex-
ecution model on standard off-the-shelf cores [10][11]. Ad-
ditional analysis lead to exploration of execution over faulty
components [25] and applicability to the Haskell and Trans-
actional Memory [7]. A step toward the fine granularity of
the dataflow is the dataflow codelet or simply codelet [26]. A
codelet is a collection of machine instructions smaller than a
thread but coarser than the traditional dataflow and repre-
sents the finest granularity of parallelism that can be sched-
uled as a unit of computation. Its operational semantics
asserts that a codelet is first enabled, when all its events
are satisfied, and then fired (scheduled), when a process-
ing element becomes available. Less recently, new reconfig-
urable architectures very similar to the dataflow approaches
have been proposed. TRIPS [1] is based on a hybrid von
Neumann/dataflow architecture that combines an instance
of coarse-grained, polymorphous grid processor core with
an adaptive on-chip memory system. TRIPS uses three
different execution modes, focusing on instruction-, data-
or thread-level parallelism. WaveScalar [17], on the other
hand, totally abandons the program counter. Both TRIPS
and WaveScalar take a hybrid static/dynamic approach to
scheduling instruction execution by carefully placing instruc-
tions in an array of processing elements and then allowing
execution to proceed dynamically. But, in the configurable
Dataflow-Machine during the execution of an algorithm it
is not necessary to fetch any instruction or data from mem-
ory thanks to its dataflow soft-core. Another lively interest

in dataflow comes from FPGAs-based computing. In this
field, there is a lot of research on the mapping and execu-
tion of dataflow graphs [2] [16], but no solution is addressed
to their execution in hardware without employing the con-
trol flow information. Besides, the reconfiguration time cost
when a DPG changes is beyond compared to our MDE.

5. CONCLUSIONS
This work outlines how a manycore dataflow execution

engine design in terms of architecture, machine language,
and dataflow model, is feasible to exploit all the fine grain
parallelism present in the algorithms whose execution re-
quires a huge amount of input data. In this contest, other
than the utilization of Dataflow Actor Cores, a fundamen-
tal role is played by the co-design approach between the
static dataflow model of execution hHLDS and the machine
language D#. Since the machine behavior is totally asyn-
chronous, its execution shows interesting performance be-
cause the computation results purged by unnecessary in-
structions present on power-hungry von Neumann-style soft-
cores. Power savings are expected by the adoption of this
asynchronous approach.

Acknowledgements
We thank the anonymous reviewers for their useful com-
ments. This work is partly supported by the European
Projects TERAFLUX (id. 249013) and AXIOM (id. 645496).

6. REFERENCES
[1] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.

John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald,
W. Yoder, and the TRIPS Team. Scaling to the end of
silicon with edge architectures. Computer, 37(7):44–55,
2004.

[2] D. Capalija and T. Abdelrahman. A coarse-grain fpga
overlay for executing data flow graphs. In The Second
Workshop on the Intersections of Computer Architecture
and Reconfigurable Logic (CARL 2012), Portland, Oregon,
June 10 2012.

[3] J. Dennis, J. Fosseen, and J. Linderman. Data flow
schemas. In A. Ershov and V. A. Nepomniaschy, editors,
International Symposium on Theoretical Programming,
volume 5 of Lecture Notes in Computer Science, pages
187–216. Springer Berlin, 1974.

[4] S. Dosanjh, R. Barrett, M. Heroux, and A. Rodrigues.
Achieving exascale computing through hardware/software
co-design. In Y. Cotronis, A. Danalis, D. Nikolopoulos, and
J. Dongarra, editors, Recent Advances in the Message
Passing Interface, volume 6960 of Lecture Notes in
Computer Science, pages 5–7. Springer Berlin, 2011.

[5] G. Estrin. Reconfigurable computer origins: the ucla
fixed-plus-variable (f+v) structure computer. Annals of the
History of Computing, IEEE, 24(4):3–9, Oct 2002.

[6] M. J. Flynn, O. Mencer, V. Milutinovic, G. Rakocevic,
P. Stenstrom, R. Trobec, and M. Valero. Moving from
petaflops to petadata. Commun. ACM, 56(5):39–42, May
2013.

[7] R. Giorgi. Accelerating haskell on a dataflow architecture:
a case study including transactional memory. In Proc. Int.l
Conf. on Computer Engineering and Application (CEA),
pages 91–100, Dubai, UAE, feb 2015.

[8] R. Giorgi and et al. Teraflux: Harnessing dataflow in next
generation teradevices. ELSEVIER Microprocessors and
Microsystems, Apr 2014.

[9] R. Giorgi and P. Faraboschi. An introduction to df-threads
and their execution model. In IEEE Proceedings of
MPP-2014, pages 60–65, Paris, France, oct 2014.

[10] R. Giorgi and A. Scionti. A scalable thread scheduling
co-processor based on data-flow principles. Future
Generation Computer Systems, (0):–, 2015.

[11] N. Ho, A. Mondelli, A. Scionti, M. Solinas, A. Portero, and
R. Giorgi. Enhancing an x86 64 multi-core architecture
with data-flow execution support. In ACM Proc. of
Computing Froniers, pages 1–2, Ischia, Italy, May 2015.

[12] A. Kondratyev, L. Lavagno, M. Meyer, and Y. Watanabe.
Realistic performance-constrained pipelining in high-level
synthesis. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2011, pages 1–6, March
2011.

[13] M. Milutinovic, J. Salom, N. Trifunovic, and G. R. Guide to
DataFlow Supercomputing. Springer, Berlin, DE, Apr 2015.

[14] S. Patil. Closure properties of interconnections of
determinate systems. In The project MAC Conference on
Concurrent Systems and Parallel Computation, pages
107–116. ACM, 1970.

[15] J. Shalf, S. Dosanjh, and J. Morrison. Exascale computing
technology challenges. In Proceedings of the 9th
International Conference on High Performance Computing
for Computational Science, VECPAR’10, pages 1–25,
Berlin, 2011. Springer-Verlag.

[16] A. C. F. D. Silva. The chipcflow project to accelerate
algorithms using a dataflow graph in a reconfigurable
system. WSEAS Transactions on Computers, 11:265–274,
2012.

[17] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen,
A. Putnam, K. Michelson, M. Oskin, and S. J. Eggers. The
wavescalar architecture. ACM Trans. Comput. Syst.,
25(2):4:1–4:54, May 2007.

[18] M. Y. Vardi. Is moore’s party over? Commun. ACM,
54(11):5–5, Nov. 2011.

[19] L. Verdoscia. Codacs project: A development tool for
embedded system prototyping. In Z. Wu, C. Chen, M. Guo,
and J. Bu, editors, Embedded Software and Systems,
volume 3605 of Lecture Notes in Computer Science, pages
59–64. Springer Berlin, 2005.

[20] L. Verdoscia, M. Danelutto, and R. Esposito. CODACS
prototype: Chiara language and its compiler. In
Proceedings of the First International Workshop on
Embedded Computing, Tokyo University of Technology,
Hachioji, Tokyo, Japan, Mar. 23–26, 2004. IEEE Computer
Society Press.

[21] L. Verdoscia, R. Giorgi, and R. Vaccaro. A clockless
computing system based on the static dataflow paradigm.
In International Workshop on Data-Flow Execution Models
for Extreme Scale Computing (DFM 2014), in conjunction
with PACT 2014, Edmonton, Alberta, CA, Aug.24 2014.

[22] L. Verdoscia and R. Vaccaro. A high-level dataflow system.
Computing, 60(4):285–305, 1998.

[23] L. Verdoscia and R. Vaccaro. D3AS Project: A Different
Approach to the Manycore Challenges. In Proceedings of
the 9th Conference on Computing Frontiers, CF ’12, pages
261–264, New York, NY, USA, 2012. ACM.

[24] L. Verdoscia and R. Vaccaro. Position paper: Validity of the
static dataflow approach for exascale computing challenges.
In International Workshop on Data-Flow Execution Models
for Extreme Scale Computing (DFM 2013), in conjunction
with PACT 2013, Edinburgh, Scotland, UK, Sept. 8, 2013.

[25] S. Weis, A. Garbade, B. Fechner, A. Mendelson, R. Giorgi,
and T. Ungerer. Architectural support for fault tolerance in
a teradevice dataflow system. Springer International
Journal of Parallel Programming, (0):1–25, May 2014.

[26] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R.
Gao. Using a ”codelet” program execution model for
exascale machines: Position paper. In Proceedings of the
1st International Workshop on Adaptive Self-Tuning
Computing Systems for the Exaflop Era, EXADAPT ’11,
pages 64–69, New York, NY, USA, 2011. ACM.

