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GLOSSARY 
ACP – Accelerator Coherency Port: an ARM AXI 64-bit port that can be used for DMA data transfers 

to the Zynq FPGA. It is suitable when there is a need to keep coherency with the memory 
hierarchy on the processor side 

AXI – a proprietary protocol for buses introduced by ARM Ltd 
AXIOM-acc – an FPGA accelerated system that performs a given function 
AXIOM-arch – the architecture of an AXIOM (module or) board 
AXIOM-core – the cores where the computations run in an AXIOM board 
AXIOM-fpga – the programmable logic part in an AXIOM board 
AXIOM-link – the interconnects that permits board-to-board communication in AXIOM 
Bitstream – the binary code used for configuring the PL 
BRAM – Block-RAM: a fast RAM that is available in the FPGA slices (in smaller blocks) 
CUDA – NVIDIA programming model for GPUs 
Conduit – A software stub that connects GASNet to a given network protocol or programming model 
Device – in this context: it is the physical system that runs a ‘device-annotated’ part of the code 
DMA – Direct Memory Access: a separate master that can take over local memory transfers 
eMMC – Embedded Multi Media Card 
FPGA – Field Programmable Gate Array 
FPGA device – a device implemented on the FPGA to accelerate a portion of a program. In this doc-

ument, it is used as a synonym of accelerator 
GASNet – Global Address Space over Network: is a language-independent, low-level networking 

layer that provides network independent communication primitives 
GP – General-Purpose Port: an ARM AXI 32-bit port that can be used for DMA data transfers to the 

Zynq FPGA. It is suitable for short transfers or control operations 
Infiniband – a high-performance (costly) NI  
IP – Intellectual Property system (either hardware or software) 
HP – High-Performance Port: an ARM AXI 64-bit port that can be used for DMA data transfers to the 

Zynq FPGA. It is suitable when there is no need to keep coherency with the memory hi-
erarchy on the processor side 

Mercurium – the OmpSs compiler 
Nanos++ -- the OmpSs runtime 
MGT – Multi-Gigabit Transceiver 
MPI – Message Passing Interface: library for writing portable message-passing programs 
PL – Programmable Logic: the purely FPGA part of a SoC like ZYNQ 
PS – Processing System: the hardwired IPs of a FPGA-hybrid SoC like ZYNQ 
NI – Network Interface 
OpenCL – Khronos group programming model for heterogeneous architectures 
OmpSs – Extension of OpenMP programming model to support task dataflow programming 
OmpSs@FPGA – FPGA extension of OmpSs 
OmpSs@Cluster – Cluster extension of OmpSs 
PHY – the physical implementation of the network interface  
QSPI – Quad Serial Peripheral Interface 
RDMA – Remote DMA: a DMA that can work from one computer to another computer 
SoC – System on Chip 
USB OTG – Universal Serial Bus On The Go 
XSMLL – (pronounced X-SMALL) eXtended Shared-Memory Low-Level API (see D7.1) 
X-Thread – a self-contained thread that can be distributed across boards through XSMLL 
ZYNQ -- A System-on-Chip commercialized by XILINX, which includes FPGA and CPUs 
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Executive summary 
This document describes the programming model extensions proposed for programming the AXIOM 
boards with OmpSs, the design of the support for the FPGA devices, the distributed cluster environ-
ment, and the communication layer. 

Following the existing OmpSs support for CUDA and OpenCL, in the AXIOM project we map the 
OmpSs target device extensions onto heterogeneous nodes including accelerators based on FPGAs. 
Code annotated with the target device (fpga) and task directives will be automatically offloaded by 
the Mercurium compiler onto separate files, and compiled with the FPGA tools to build the accelera-
tor for the FPGA (i.e.,. on the programmable logic part of a System-on-Chip as the Zynq or in general 
on the AXIOM-fpga). These tasks will be spawned by the Nanos++ runtime system to run on the 
FPGA and or on the cores (i.e., the ARM-A9 cores in case of the Zynq SoC or in general on the AX-
IOM-cores). Nanos++ will use a custom DMA library presented in this deliverable to take care of data 
transfers between the host memory and the FPGA devices. 

The support for distributed cluster environments is based on the Nanos++ runtime system and its con-
nection to the communication layer, through specific communications software. In this project we are 
considering the use of common tools, like MPI or GASNet, and also implementing our specific ap-
proach based on the XSMLL infrastructure (cf. deliverable D7.1). 

An initial evaluation of the low level communication mechanisms to transfer data to and from the 
FPGA devices (i.e., to/from the AXIOM accelerators) is shown. These results will be used during the 
implementation of the support for the OmpSs extensions for FPGAs to decide the specific mechanism 
to use in each situation. 
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1 Introduction 

1.1 Document structure 
This deliverable is organized as follows 

• Section 2 describes the programming model extensions proposed for programming the AXI-
OM boards with OmpSs. 

• Section 3 describes the runtime support planed for distributed environments based on the 
connection of several AXIOM boards. 

• Section 4 presents the design of the communication layer used to connect AXIOM boards and 
build the distributed system. 

• Section 5 shows the evaluation of the low-level FPGA data transfer mechanisms to support 
OmpSs.  

1.2 Relation to other deliverables 
This document completes the description of the programming model extensions and their support, 
presented in the document “MS41 – Definition of the Programming Model Extensions”, and designed 
to run on the AXIOM platform presented in the document “D6.1 – Technical specifications of AXI-
OM board”. 

1.3 Tasks involved in this deliverable 
This deliverable is the result of the work developed in tasks: 

• T4.1: Requirement definition for the programming model extensions 
• T4.2: OmpSs programming model extensions 
• T5.3: Parallel programming library 
• T6.5: System interconnect 

2 Programming Model Extensions 
In this section, we describe the OmpSs Programming Model [3], the extensions planned for OmpSs to 
spawn tasks in the FPGA-device (an AXIOM accelerator), and the extensions needed to support the 
cluster version. This support has been designed and partially developed during the first year of the 
AXIOM project. 

2.1 Introduction to the OmpSs Programming Model 
The OmpSs Programming Model supports the execution of heterogeneous tasks written both in 
OpenCL and CUDA, and in the distributed cluster version. Both OpenCL and CUDA options require 
the programmer to provide the OpenCL or CUDA code, and use the target clauses to move the data to 
the associated accelerator. In the AXIOM project, we are using the same technique to spawn tasks to 
the FPGA, provided there is a compiler to generate the FPGA bitstream implementing the task, from 
C/C++ code, or there is an existing bitstream available with a known interface to access data. For ex-
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ecuting tasks in the cluster version, the programmer needs to specify the task as plain C/C++ code. 
Execution on the OmpSs@cluster version automatically allows the runtime system to spawn tasks 
remotely. 

The programming model will allow to parallelize applications on the AXIOM cluster, and spawn 
tasks on the FPGAs available on each board. Using OmpSs@cluster with FPGAs support, program-
mers will be able to express two levels of parallelism. 

A first level of parallelism will be targeted to the AXIOM-cores, i.e. the cores that are available on the 
AXIOM-board (e.g., the ARM-A9 cores in the case of a Zynq SoC, c.f. Deliverable D6.1). Tasks at 
this level will be spread across the AXIOM boards, as if they would be executed on an SMP machine 
(see Sections 3 and 4 for the distributed cluster support). 

A second level of task parallelism will be expressed through the OmpSs extensions targeting the 
FPGAs (see below, Section 2.2).  

The OmpSs Programming Model is based on two main components and some additional tools: 

• The Mercurium compiler [8] takes the source code as specified by the programmer and un-
derstands the OmpSs directives to transform the code to run on heterogeneous platforms, in-
cluding OpenCL and CUDA accelerators. In this project, the compiler will be extended to al-
so support FPGA-based accelerators. 

• The Nanos++ runtime system, which is the responsible to manage and schedule parallel tasks, 
respecting their dependences, transferring the data needed to/from the accelerators, when 
needed and the lower-level interactions (cf. Section 3). 

• Additionally, OmpSs can use the Extrae tool to generate execution traces that can be later 
visualized with the Paraver tool, and analyze their behavior. Both Extrae and Paraver are also 
developed at BSC. This complements the evaluation tools developed in WP7 (see Deliverable 
D7.1). 

Figure 1 shows the existing syntax used in the target and task directives in OmpSs. Task directive 
clauses act as follows: 

• in, out, and inout clauses allow the specification of the input, output only, and input/output 
ranges of data that are to be used by the task. This way, the Nanos++ runtime system takes 
care to manage the task dependences before and after executing this task. 

• concurrent and commutative allow the specification of variants of inout dependences for inout 
data. Concurrent means that data is accessed with an explicit synchronization inside the task, 
so that the runtime system can exploit tasks in parallel. Commutative indicates that the tasks 
can be executed sequentially, but in any order (possibly different from the creation order). 
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Figure 1 – OmpSs target and task directives 

• priority(P) is used to specify the importance of the task. It is a hint to the scheduler, that may 
try to execute higher priority (P) tasks before lower priority tasks, always respecting the de-
pendences between them. 

• label(name) provides a name for the task, specifically for the instrumentation tools. 
• shared, private, firstprivate, Default are clauses specifying the data sharing for the listed vari-

ables. They are compatible with the same clauses in OpenMP. 
• untied means that the task can change processor after blocking in a taskwait. By default tasks 

are tied, and they execute always in the same processor after a taskwait. 
• final(expression) indicates that this task will not create inner tasks. 
• if(expression) indicates if the task can be deferred or not. If the expression evaluates to True, 

the task will be a regular task. If the expression evaluates to False, the task will be created and 
executed immediately by the same thread. 

Target directive clauses act as follows: 

• device specifies the specific device this task is to run on. “smp” means the host cores, 
“opencl” indicates an OpenCL-capable device, and “cuda”, a CUDA-capable device. 

• implements(function-name) indicates that this task is equivalent to the function indicated, pos-
sibly for a different device, and the runtime system is free to schedule either one in the avail-
able device. 

• copy_deps / no_copy_deps, indicate if the dependences listed in the task directive should also 
be kept consistent / or not with the accelerator. 

• copy_in, copy_out, copy_inout list additional data that should be kept consistent with the ac-
celerator. 

• ndrange, shmem, file, and name clauses provide additional arguments for OpenCL and 
CUDA target tasks, which are not relevant for AXIOM. 

Tasks can be associated to a code block or to a function. In the case of inline code annotations, tasks 
targeting the host cores are outlined as new functions by the Mercurium compiler and spawned as 
tasks to be executed on the SMP host. Tasks targeting the FPGA will be outlined by Mercurium onto 
separate files, and compiled through the Xilinx Vivado HLS in order to generate VHDL, and later 
through the Vivado tool to generate the bitstream for the FPGA [11]. Invoking tasks on the FPGA will 
be done by the Nanos++ runtime system by sending the data needed, executing the FPGA device, and 
getting the resulting data back to the host memory.  

In the case of function interfaces annotated with the target device (fpga) directive, the invokations of 
such functions will be done in the FPGA device using the same parameter passing. 

#pragma omp target device ({ smp | opencl | cuda })  \ 
            [ implements ( function_name )] [ copy_ deps | no_copy_deps ] \  
            [ copy_in ( array_spec ,...)] [ copy_ou t (...)] [ copy_inout (...)]     \  
            [ndrange (dim, …)] [shmem(...) ] [file( name)] [name(name)]  
#pragma omp task [ in (...)] [ out (...)] [ inout ( ...)] [ concurrent (...)] [ commutative (...)] \  

[ priority (P) ] [ label (name) ] \  
[ shared(...)][private(...)][firstprivate(...)][def ault(...)] \  
[untied][final (expression)][if (expression)]  

 {code block or function prototype}  
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2.2 OmpSs extensions for the FPGAs 
OmpSs needs to be extended to support the Zynq chip with the FPGA selected in the AXIOM project. 
The extensions to provide support for these chips in the Mercurium compiler are: 

• To incorporate a new target device named “fpga”: in addition to the current smp, cuda 
and opencl devices, the “fpga” device will cause the Mercurium compiler to understand 
that the function annotated is to be compiled with the Xilinx Vivado HLS compiler, for 
the FPGA, in order to generate the bitstream. 

With this extension, the compiler will generate code for the runtime system specifying the tasks that 
should be run in the FPGA device. The Nanos++ runtime system will also need to be extended, in the 
following way:  

• Support to spawn tasks in the FPGA device. 

• Support for the target clauses related to data transfers: 

• Data-copy clauses (copy_in, copy_out, copy_inout): for the FPGA target, they will 
trigger the data transfer of the data specified to/from the FPGA device. 

• Dependence-copy clauses (copy_deps, no_copy_deps): for the FPGA target, they will 
indicate if, additionally, the data dependences specified in the associated task should 
be transferred or not, with the directionality associated in the dependence clauses. 

• Support for data transfers to/from the FPGA. The Nanos++ runtime will invoke the ser-
vices of the DMA library developed to transfer data in the FPGA environment. 

• Include the FPGA device in the support of the implements clause in order to allow several 
implementations of tasks to be scheduled in the processors/devices available. 

The DMA library interface [6] provides the means to allocate buffers to exchange data between the 
Linux kernel and the FPGA hardware. In the current prototype, when the FPGA has been given the 
data to operate with, the IP kernel is automatically started, and after finishing, the results can be read 
from it. The current version of the interface is shown in the following tables. It may still change as the 
work on Nanos++ and the Linux driver proceeds in the project. 

Method parameter Description 

Initializes the DMA userspace library and driver. 

xdma_status  xdmaOpen (void); 

 

Method parameter Description 

Cleans up the DMA userspace library and driver. 

xdma_status  xdmaClose (void); 

 

Method parameter Description 

uint32_t * num_devices [out]   Number of FPGA-devices present in the system 

Returns the number of devices present in the system. 
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xdma_status  xdmaGetNumDevices (uint32_t * num_devices); 

 

Method parameter Description 

uint32_t entries [in] Number of FPGA-device handles that can be stored in the ‘devices’ 
array 

xdma_device * devices [out] Array to hold the device handles, at least of size entries  

uint32_t * num_devices [out] Actual number of device handles returned 

Returns the device handles for the devices present in the system. 

xdma_status  xdmaGetDevices (uint32_t entries, xdma_device * devices, 

                                               uint32_t * num_devices); 

 

Method parameter Description 

xdma_device  device [in] FPGA-device that will be connected to the newly allocated channel 

xdma_dir  direction [in] Direction of the channel (XDMA_TO_DEVICE, XDMA_FROM_DEVICE) 

xdma_channel_flags  flags [in] Channel flags (currently unused) 

xdma_channel * channel [out] Handle to the newly opened channel 

Open a device channel. Each device can have one input and 1 output channels used to send/receive data. 

xdma_status  xdmaOpenChannel (xdma_device device, xdma_dir direction, 

                              xdma_channel_flags flags, xdma_channel * channel); 

 

Method parameter Description 

xdma_channel * channel [in,out]  DMA channel to be closed 

Closes a DMA channel and releases its resources. 

xdma_status  xdmaCloseChannel (xdma_channel * channel); 

 

Method parameter Description 

uint8_t **  buffer [out] Pointer to allocated buffer 

xdma_buf_handle *  handle [out] DMA buffer handle 

uint32_t  len [in]   Buffer length in bytes 

Allocates a buffer in kernel space to support data transfers to a DMA device. The buffer will be pinned. 

xdma_status  xdmaAllocateKernelBuffer (uint8_t ** buffer, 

                                       xdma_buf_handle  handle, uint32_t len); 

 

Method parameter Description 

void * buffer [in] Address of the buffer to be freed 

xdma_buf_handle handle [in] Buffer handle to be freed 

Free a pinned buffer allocated in kernel space and unmap the region from user space. 

xdma_status  xdmaFreeKernelBuffer (void * buffer, xdma_buf_handle handle); 
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Method parameter Description 

xdma_buf_handle  buffer [in] Buffer handle 

uint32_t  len [in] Buffer length 

uint32_t  offset [in] Transfer offset 

xdma_xfer_mode mode [in] Transfer mode (XDMA_SYNC, XDMA_ASYNC) 

xdma_device device [in] DMA device to be used to transfer data 

xdma_channel channel [in] DMA channel to use 

xdma_transfer_handle * handle [out] Handle identifying the DMA transfer, used with XDMA_ASYNC 

Submits a pinned buffer allocated in kernel space for a DMA transfer. 

xdma_status  xdmaSubmitKBuffer (xdma_buf_handle buffer, uint32_r len, 
                                uint32_t offset, xdma_xfer_mode mode, 
                                xdma_device device, xdma_channel channel, 

                                xdma_transfer_handle * transfer); 

 

 

Method parameter Description 

void *  buffer [in] Buffer to be transferred 

uint32_t  len [in] Buffer length 

xdma_xfer_mode mode [in] Transfer mode (XDMA_SYNC, XDMA_ASYNC) 

xdma_device device [in] DMA device to be used to transfer data 

xdma_channel channel [in] DMA channel to use 

xdma_transfer_handle * handle [out] Handle identifying the DMA transfer, used with XDMA_ASYNC 

Submits a user allocated buffer (i.e. using malloc) to be transferred through DMA. 

xdma_status  xdmaSubmitBuffer (void * buffer, uint32_r len, xdma_xfer_mode mode, 
                               xdma_device device, xdma_channel channel, 
                               xdma_transfer_handle * transfer); 

 

Method parameter Description 

xdma_transfer_handle  handle [in]  DMA transfer handle to be checked 

Tests the status of a DMA transfer (finished, pending, or in error). 

xdma_status  xdmaTestTransfer (xdma_transfer_handle handle); 

 

Method parameter Description 

xdma_transfer_handle  handle [in]  DMA transfer handle to wait for 

Waits for a transfer to finish (finished, pending, or in error). 

xdma_status  xdmaWaitTransfer (xdma_transfer_handle handle); 

 

Method parameter Description 

xdma_transfer_handle  handle [in,out]  DMA transfer handle to be released 

Releases the data structures associated with a DMA transfer. 

xdma_status  xdmaReleaseTransfer (xdma_transfer_handle * handle); 



Project: AXIOM  - Agile, eXtensible, fast I/O Module for the cyber-physical era 
Grant Agreement Number: 645496 
Call: ICT-01-2014: Smart Cyber-Physical Systems 
 

Deliverable number: D4.1 
Deliverable name: Programming Model Extensions 
File name: AXIOM-D41-v1.docx Page 12 of 28 

 

2.3 Support for OmpSs@cluster 
The OmpSs@Cluster [2] infrastructure uses a communication layer to launch tasks in remote nodes. 
Task descriptors and data travel on the communication layer. In our current implementation, this layer 
is GASNet [1], usually running on top of MPI [4]. The different alternatives to implement this ap-
proach that are currently under study in our project are presented in Section 3. The underlying com-
munications layer is presented in Section 4. 

3 Support for distributed environments 
This Section provides a brief explanation of the support needed to integrate the OmpSs programming 
model into the networking support provided by the AXIOM boards. 

Note: Further details will be specified in Deliverable D5.2 (due at month m18 in the project, i.e. 6 
months after this deliverable), where we will describe in more detail the aspects related to the remote 
memory access.  

The main goal that drives the choices described below is to provide an efficient and possibly light-
weight implementation of the infrastructure that allows OmpSs to use the AXIOM networking infra-
structure.Given the complexity of the framework, we realized that there are a number of possible 
ways for implementing this kind of support, each one requiring integration at different levels of the 
OmpSs toolchain. For this reason, during the project we are going to explore, implement and evaluate 
different options, in order to choose the ones that best fit the project objectives. The options we are 
exploring (described in more detail below) are (note the option numbers are the same depicted in Fig-
ure 2): 

• Integration with OmpSs@cluster as a GASNet conduit based directly on the FORTH network 
interface (option 1). 

• Integration with OmpSs@cluster as a GASNet conduit based on XSMLL [5][7] (option 2a); 
• Integration with OmpSs as a Nanos++ [8] plugin based on XSMLL [5][7] (option 2b); 

• Integration directly below Mercurium [8] (option 3); 

Please note that the outcome of the evaluation is likely not to provide a single "winner", because each 
solution has its advantages and drawbacks. As we will discuss below, for example, we expect option 1 
to be a pure software implementation over the FORTH network interface (potentially slower but with 
lower FPGA requirements), whereas option 2b will take advantage of the XSMLL dataflow approach 
[5][7] (thus potentially faster but with higher FPGA requirements). 
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Figure 2– Architectural view related to the support of distributed environments. 

 

Figure 2 shows an architectural view of the various options under exploration. In particular, we high-
light the following main architectural components: 

• The Mercurium source to source compiler; 
• The Nanos++ Runtime library; 
• A set of Nanos++ "targets". The interesting ones for this Section are the "cluster" target and 

the new "XSMLL" target developed in the context of the AXIOM Project (see later); 
• The GASNet layer used for the implementation of the "cluster" target; 
• The GASNet "conduits", which are basically plugins that enable GASNet to run on different 

transport (network) layers. Please note in particular MPI and UDP, which are the ones on 
which OmpSs@cluster typically works, and in addition to these, please note the new XSMLL 
and FORTH conduits in development in the context of the AXIOM Project (see later); 

• The XSMLL Layer, providing fine-grained task dataflow; 
• The FORTH Message Passing / RDMA networking support, implemented in FPGA and 

available to the ARM cores of the Xilinx Zynq microcontroller used in the AXIOM boards.   
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We can now describe shortly the options we are considering in the AXIOM Project. To ease the un-
derstanding of the reader, we are presenting them in reverse order, because in this way each step will 
be "incremental" to the previous one. 

Option 1: GASNet conduit based directly on the AXIOM network 
interface (FORTH) 
The straightforward way of integrating OmpSs with the AXIOM-link interconnect by FORTH is to 
operate at the level of OmpSs@cluster, providing a so called "conduit" of GASNet. A "conduit" of 
GASNet is a plugin of GASNet that allows the implementation of the full GASNet API on top of a 
"transport layer". 

Currently, there are various transport layers that can be used, starting from the simple UDP layer, to 
MPI, Infiniband and others. 

The approach here is to re-implement the GASNet conduit API using the Linux Kernel Driver in de-
velopment in Task 5.1. The implementation will take advantage of the RDMA support provided by 
the FORTH for the AXIOM-link interconnect in a way similar to what done in the Infiniband conduit. 

Option 2a: GASNet conduit based on XSMLL 
This option is similar to Option 1, but it tries to use the XSMLL [5][7] Dataflow layer to provide a 
proper transport layer for the GASNet conduit. 

After an initial implementation prototype done on the COTSon simulator [9][10] was developed as 
part of the WP7 activities (see deliverable D7.1), we foresee the fact that this option will probably not 
be the most efficient one. The reason for this is related to the semantic abstractions which are present 
at the various levels. 

In particular, both the Nanos++ plugin interface and the XSMLL layers exposes a "task" semantic. On 
the other hand, the OmpSs@Cluster has the role to transform the Nanos++ plugin "task" semantic into 
something more manageable by a network interface. OmpSs@Cluster does that using the GASNet 
layer, which exports an "active message" semantic to the upper layer. OmpSs@cluster, in practice, 
transforms the "task" semantic into a "active message" semantic, leaving the rest to GASNet. 

At the GASNet layer, the "active message" semantic exported at the top is then managed internally, 
and then implemented using simpler conduit interfaces. The conduit interfaces are using a sort of 
message exchanges using asynchronous message sends and synchronous message receive functionali-
ty. 

As we can see, the initial "task" semantic, available at the Nanos++ plugin level, has been transformed 
into a message passing approach, available at the GASNet conduit level. To help this, partners UNISI 
and EVI are exploring the possibility to add a message passing extension to XSMLL (part of this 
work is developed in WP5). The appropriate granularity and operations are under exploration. 

For the above reasons, we are not confident that this option will provide the best results, but was con-
sidered since it was a possibility apparently reasonable and simple.  
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Option 2b: Nanos++ plugin based on XSMLL 
Given the limitations of option 2a, we decided to evaluate option 2b, which tries to avoid the semantic 
incompatibility between the various layers. 

In particular, the idea is to develop an additional plugin to Nanos++, which will allow the direct usage 
of the XSMLL layer. This approach is for sure the most promising one, since the semantic exported 
by XSMLL and required by Nanos++ are somehow similar and based on a "task" semantic. 

Moreover, the XSMLL interface will provide the runtime support allowing the distribution of X-
Threads on the various nodes allowing the possibility to early test the results using the COTSon 
[9][10] simulator. 

Afterwards, the possibility to optimize the implementation of XSMLL in FPGA is going to provide a 
performance boost to the implementation. 

We expect to implement an initial version of this option during the second year of the project. This 
initial version will support a subset of the constructs available on the OmpSs programming model 
(e.g., the first implementation will be without the "taskwait" construct). 

Option 3: Mercurium integration with XSMLL 
Another option, which could be available, stems from the idea that the XSMLL execution model 
could be directly integrated into Mercurium, in a way to provide direct XSMLL code generation of 
OmpSs code. 

If on one hand this option seems to provide an increased performance thanks to the direct usage of the 
XSMLL implementation (which can be optimized in FPGA), on the other hand it needs some special 
care in the integration with the other "targets" of OmpSs (in particular the cluster and FPGA targets in 
Nanos++). 

Moreover, additional study needs to be done in order to support data dependencies with the richness 
of options currently provided by the OmpSs framework thanks to the Nanos++ implementation. In 
particular, task dependencies in OmpSs can be specified using complex dependency constraints, 
whereas the XSMLL interface offers a method based on counters; an implementation of option 3 will 
have the (non-straightforward) need to map those two methods together. 

For these reasons, after a first evaluation we plan not to implement option 3 during the AXIOM Pro-
ject. 

 

4 Communication layer 
The AXIOM communication layer is responsible for the data transmission among all available nodes 
in the network. It consists of a software library that allows the host CPU of each node to send and re-
ceive control and RDMA messages via its Network Interface (NI) module. The tables below summa-
rize the current version of the NI software function prototypes. They may still change as the work on 
the interface and Linux driver proceeds in the project. 
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Figure 3 illustrates the NI structure and how the software library can be used for its configuration 
from the host CPU. During network initialization, a network topology algorithm is executed on each 
node to identify its neighbor ones. Within each node, the topology algorithm will use the functions 
setNodeId, identifyNeighbotNode and reportNeighbors, to discover its neighbors and report them to 
the master network node. The latter will generate each node’s routing table (used by the router module 
during packet relaying if required), which can be configured by the host CPU via the NI software li-
brary (setRoutingTable). We should note that in case a node is added / removed to the network, the NI 
software library provides methods (deleteNodeFromRoutingTable, updateRoutingTable) to update ac-
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cordingly the NI routing table / remove completely a node if needed. Moreover, helper functions (no-
deId, getRoutingTable), can provide debugging capabilities.  
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Figure 3 - Overview of the NI structure and its configuration from the host CPU via the software interface. 

The NI employs a set of memory-mapped status and control registers. The status register is directly 
accessible by the NI library (readNIStatusReg) and the host CPU can read it to monitor various pa-
rameters, such as the DMA engine state (idle, busy), the messages queues fill status (empty, not emp-
ty, near full, etc), the PHY link state (connected, down), as well as the progress of on-going RDMA 
requests / writes (readNIHWCounter). The control registers are also directly accessible by the NI 
software (setNIRegister); the host CPU can write them to configure NI parameters, such as the node 
id, the PHY link loopback mode, and successful transmission notifications.  

Finally, the NI employs a set of memory-mapped hardware queues, accessible by the NI software li-
brary. The CPU can use these queues to push asynchronous message transmissions, such as RDMA 
requests / writes (RDMAreq, RDMAwrite), and raw data transmissions (sendRawData). Also, it can 
check asynchronously for any received messages, and proceed to further processing if required. 

5 Preliminary evaluations 
In this section, we present some preliminary results that will be used in the AXIOM project to select 
proper implementation options for OmpSs to use the Zynq FPGA. Figure 4 presents the basic diagram 
of the Zynq chip with the main blocks, and the way they are interconnected. The central part of the 
figure is the Zynq chip. It is split in two main parts: at the top part, the Processing System (PS), con-
tains the hardwired Cortex A9 processors and a memory controller. At the bottom, the Programmable 
Logic (PL) contains the FPGA 
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Memories represented at the sides of Figure 4 are the main host memory, or PS RAM (Host), on the 
left side, which is directly accessible from the A9 cores, and it is the one that Linux manages, with a 
capacity of 1GByte; and the FPGA memory, or PL RAM (FPGA), on the right side, which is directly 
accessible from the FPGA, and its capacity is also of 1GByte. Additionally, the PL-BRAM memory 
(shown inside the AXIOM accelerator IP) is the typical block RAM memory available inside FPGA 
chips. It is smaller in size, ranging from 3.3MBytes (on the 7015 chip) to 19.3MBytes (on the 7045 
chip).  

In this environment, programmers locate their application data in the PS RAM (Host). From there data 
can be transferred to the PL-RAM (FPGA) when the amount of data is significant, and also when it is 
known to be reused often. And for smaller chunks of data (up to a few Mbytes), it is enough to move 
it directly to the PL-BRAM on the specific FPGA device (AXIOM accelerator IP in the figure). 

 

 

Figure 4 – Basic structure of the Xilinx Zynq chip and the connectivity 
of the ARM cores (PS) with the FPGA logic (PL) 

In particular, we show measurements of the following data access methods: 

• The data transfer communication connection between the Programmable Logic and the Host 
CPU in the Zynq FPGAs (path from the PS RAM of the host, to the PL BRAM on an acceler-
ator in Figure 4) 
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• The data transfer type: synchronous or asynchronous at the Nanos++ FPGA device dependent 
layer 

• Performance estimation and evaluation of hardware/software decisions based on the number 
of accelerators and size, and the heterogeneous execution 

• Evaluation of the performance of the data transfers from the PS RAM of the host to the PL 
RAM of the FPGA, and then to the PL BRAM on the accelerator (see Figure 4). 

5.1 PS RAM to PL BRAM analysis 
In the Zynq boards, the type of memory transfer to implement is important, as it will influence the de-
sign and generation of the hardware accelerators to be run in the FPGA, and to create the device tree 
of the Linux operating system. This is necessary because the hardware accelerator implementations 
have to include on the FPGA the IPs needed to do the data transfers from the RAM of the Host to the 
BRAMs of the FPGA, and this IP of the DMA engine should be recognized by the Linux operating 
system at boot time. 

This evaluation will help decide the best FPGA device to perform memory transfers that can be de-
veloped as a part of the FPGA device support in the Nanos++ runtime. 

Figure 5 shows the accumulated memory bandwidth achieved when transferring a certain amount of 
32-bit elements using the seven possible ports between the PL and the PS systems: 1 Accelerator Co-
herence Port (ACP), 4 High Performance (HP) ports, and 2 General Purpose (GP) Ports (see Figure 
4). The experiment is done in standalone mode, and with a single ARM core driving the transfers. The 
accumulated memory bandwidth is shown for input (PS RAM to PL BRAM) and output (PL BRAM 
to PS RAM) memory transfers. The total accumulated memory bandwidth is of about 1.5GB/s.  

 

Figure 5 - Accumulated memory bandwidth (in Mbytes/s) using up to seven PS to PL connection ports 
(standalone execution, 1 ARM core). 

Although the data rate reached in these experiments should be enough to fully support communica-
tions of 3-6 Gbit/s on the AXIOM-link connection, the specific IP cores used to implement the NI of 
the communication layer may limit the final communication rate achieved. 
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Figure 6 and Figure 7 show the separated memory bandwidth for each of the connection ports. The 
only ACP connection is shown, and in the case of the HP and GP interfaces, with up to 4 and 2 con-
nections respectively. Table 1 shows the unitary and aggregated bandwidth for each of the port types, 
when working on a single direction. The peak memory bandwidth is not achieved for any connection, 
as shown in the figures. 

The input memory bandwidth (Figure 6) for the ACP connection is worse than that achieved by the 
other connections. In this case, ACP maintains the coherence with the SMP. The output memory 
bandwidth (Figure 7) on the ACP connection is similar to 2 GP connections running in parallel and 
slightly better than two non-coherent HP connections. 

 

Table 1 – Peak, single direction, bandwidth achieved for each type of communication port in the Zynq FPGA 
running at 100 Mhz. (in MBytes/s)  

Port ACP HP GP 

Peak bandwidth (unitary) 381 MB/s 381 MB/s 381 MB/s 

Peak bandwidth (aggregated) 381 MB/s (1 port) 1525 MB/s (4 ports) 762 MB/s (2 ports) 

 

Figure 6 – Input (PS to PL) memory bandwidth for each of the PL to PS connections. 
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Figure 7 – Output (PL to PS) memory bandwidth for each of the PL to PS connections. 

 

Therefore, the ACP does not seem to be the best choice based on the memory transfer bandwidth, but 
it keeps the coherence of the memory cache with the Host cores of the Zynq system, which is really 
important for heterogeneous parallel executions. We decided to evaluate if having more than one de-
vice connected to the ACP port may help getting better performance. Figure 8 (input) and Figure 9 
(output) show the input and output memory bandwidth achieved using the ACP connection with: 

• 1 FPGA device (i.e., one AXIOM accelerator on the FPGA), and 1 thread generating data 
(blue bar) 

• 2 FPGA devices, and 1 thread generating data (red bar) 
• 2 FPGA devices, and 2 threads generating data (yellow bar) 

Figures also show the peak performance that can be achieved with 1 device (green curve) and 2 de-
vices (brown curve). We have done the experiment varying the accelerator frequency since this also 
influences the memory bandwidth performance. 
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Figure 8 – Input (PS to PL) memory bandwidth using 1 or 2 ACP-connected devices, and 1 or 2 threads. 

On one hand, results are really promising since we can double the DMA memory transfer bandwidth 
using 2 devices (with 1 or 2 threads) in the case of input memory transfers. This is a significant im-
provement if we look at the 100MHz frequency, but it is even more significant the bandwidth 
achieved when increasing the frequency. On the other hand, the output memory bandwidth achieved 
is doubled also when using 2 threads, but not for 1 thread.  These results show that the ACP connec-
tion can achieve good memory bandwidth, keeping the coherence of the memories, if we use more 
than one device and more than one thread to use the accelerators connected to the ACP. 

 

Figure 9– Output (PL to PS) memory bandwidth using 1 or 2 ACP-connected devices, and 1 or 2 threads. 
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5.2 Asynchronous vs Synchronous memory transfers 
Another aspect that has been evaluated is the usage of synchronous or asynchronous memory transfers 
to improve the application performance. Figure 10 shows the performance comparison in GFLOPS 
for a Matrix Multiply (1024x1024) using a 128x128 MxM accelerator, at different frequencies, using 
synchronous and asynchronous memory transfers. The GFLOPS are calculated by dividing the 
amount of floating point operations (10243) by the time taken by the execution of the matrix 
multiplication. In the experiment with asynchronous transfers, the benchmark computes on a block, 
while there are transfers for other blocks in progress, thus overlapping communication of matrix 
blocks with computation on other blocks already transfered. In the synchronous version all data 
transfers have a DMA wait operation before proceeding. 

Results show that (1) frequency helps to improve the MxM application performance, and (2) 
asynchronous memory transfers are worthy to be implemented inside the Nanos++ runtime. 

5.3 Master/worker thread design in the Nanos++ runtime 
Currently, OmpSs uses a schema with one master thread and one helper thread per device. However, 
in a Zynq system, with only 2 cores in the SMP, this can mean a significant impact due to context 
switches (three threads fighting to obtain 1 of the two SMP cores). We have evaluated the current be-
havior of this case, and also two more: (1) one helper thread is in charge of more than one FPGA ac-
celerator, and (2) one SMP thread (worker or master) deals with SMP and accelerator executions. 

 

 

Figure 10– Performance obtained from a Tiled Matrix Multiplication benchmark 
(matrix size 1024x1024, tile size 128x128) in GFLOPS. 

Figure 11 shows the performance results of those three situations using a prototype of the Nanos++ 
runtime. The evaluation is done for a MxM of 1024x1024, using 128x128 blocks. We also show per-
formance results for the following cases: 

- 1 acc: using just one accelerator 
- 2 acc (1 helper thread): 2 accelerators are used by the same and unique helper thread. 
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- 2 acc (2 helper threads): 1 helper thread per accelerator. 
- 2 acc (1 helper + hyb. Master): master thread can create tasks, execute them in the SMP and 

also execute them in the accelerators. 
- 2 acc (1 helper) + smp: SMP is used to execute 128x128 MxM blocks, and 1 helper thread to 

run in two hardware accelerators. 

 

Figure 11- Execution time results for the Matrix Multiplication 
(matrix size 1024x1024, tile size 128x128). 

 

The results do not show a significant impact on the performance having 2 helper threads and 1 master 
thread running in the Host cores of the Zynq chip. However, we can observe that the context switches 
on the system increases for our application, although it seems that it was not a significant problem for 
this case. On the other hand, the heterogeneous execution of 128x128 MxM blocks, with the current 
scheduling policy does not help at all (2 acc 1 helper + smp) to achieve performance. The MxM exe-
cution on the SMP is too slow compared to the hardware accelerators and any execution on it pro-
vokes a big load unbalance. 

Related to this behavior, we started to evaluate the possibility of estimating the overall heterogeneous 
performance, so that we can decide which is the best hardware/software co-design decision to anno-
tate the applications in a proper way. 

Figure 12 shows the heterogeneous performance estimation for different hardware/software co-design 
alternatives to accelerate the MxM application. In this estimation we consider a tiled matrix multiply 
of 256x256, and blocks of 64x64 or 128x128 size. The evaluation estimates which is the best decision 
in a heterogeneous platform regarding to: block size, number of accelerators, and possible hybrid exe-
cution in a SMP host. The result shows the same trend in both estimation and real execution, and this 
is that SMP is not helping to improve the application performance, and the 128x128, 1 accelerator, no 
heterogeneous execution is the best choice. In this particular experiment, this happens because the ex-
ecution of an SMP task takes much longer than the execution on the FPGA accelerator, and as a con-
sequence, when the accelerator has finished all assigned tasks, there is still pending work to finish on 
the SMP side. 
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Therefore, this is a good starting point to analyze different scheduling policies that can help to avoid 
situations like those in Figure 11, where the heterogeneous execution (i.e., acc + smp) was not a good 
choice. 

 

Figure 12– Heterogeneous performance estimation vs. real execution. 

 

5.4 PS RAM (host) to PL RAM (FPGA) evaluation 
Finally, we have also evaluated the possibility of accessing the external PL RAM (1GB of memory). 
Using the external memory of the PL can help to re-use the data among accelerators without having to 
access the SMP (PS) RAM every time (see Figure 4). Therefore, Nanos++ will initialize a DMA from 
SMP RAM to FPGA RAM, and then, the accelerator will be able to access and read the FPGA RAM 
by itself, and will allow the SMP to do other processing. 

Figure 13 shows the performance results for a MxM multiplication of 2048x2048 single precission 
floating poing using 128x128 or 256x256 blocks in a 706 board with a PL at 200MHz , and a PS at 
800MHz. In particular, we show in the first bar the execution time of a MxM of this size, block 
128x128, using PS RAM to PL BRAM. Second and Third bars show the performance results for 
128x128 and 256x256 blocking MxM. In both cases we distinguish from top to bottom: computation 
part, FPGA RAM to BRAM communication, and then PS RAM to PL RAM communication. Those 
preliminary results show that the RAM to RAM communication has a very promising small cost. 
Also, there is a trade off between the overall cost on communication and computation, as it can be 
seen in the figure. The 128x128 double the communication time of the 256x256, but it is compensated 
by the smaller computation cost of the 128x128. 

In any case, this very small memory transfer cost between RAMs can be taken into account to use the 
external FPGA memory RAM as a global shared memory is used in the GPUs in OmpSs. 
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Figure 13– Memory transfer comparison PS RAM to PL RAM vs. PS RAM to PL BRAM. 

 

 

6 Confirmation of DoA objectives 
Describe how the deliverables conform to the DoA stated objectives, using the sample table if appro-
priate. 

PLANNED  DELIVERED 

DELIVERABLE:  

• Specification of the OmpSs extensions, 
cluster support, communication layer and 
evaluation of the low-level mechanism of 
the FPGA in the Zynq board.  

Report 

7 Conclusion 
We have presented the programming model extensions proposed for programming the AXIOM 
boards with OmpSs, the design of the support for the FPGA devices, the distributed cluster environ-
ment, and the communication layer. 

Programming the AXIOM environment will be based on the OmpSs programming model with cluster 
support, and extended to support target devices in the board FPGA. The Nanos++ runtime will use the 
DMA library design presented in this deliverable to take care of data transfers between the host 
memory and the FPGA devices. 

Supporting distributed environments will be based on the communication layer (AXIOM-link) pro-
vided by FORTH to exchange data between AXIOM boards. In the project we are considering the use 
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of common tools, like MPI or GASNet, and also implementing our specific approach based on the 
XSMLL infrastructure. 

An initial evaluation of the low level communication mechanisms to transfer data to and from the 
FPGA devices is shown. These results will be used during the design of the support for the OmpSs 
extensions for FPGAs to decide the specific mechanism to use in the implementation. 

The next steps that will be taken in the project will be to work and provide the implementation for the 
different components that we have now designed: 

- The final prototype targeting the FPGA devices, based on the DMA library to transfer data to 
and from the FPGA. 

- The support for distributed systems based on common tools and the XSMLL infrastructure. 
- The communication layer implemented in the FPGA. 

We will also evaluate the possibility to reuse some of the components implementing the communica-
tion layer, specially the DMA devices, to be used to transfer data to the accelerators in the FPGA. 
This way, we can save some of the FPGA resources and fit larger accelerators on it. 
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